
1

Optimized Split Computing Framework for Edge and Core Devices
Andrea Tassi, Oluwatayo Yetunde Kolawole, Joan Pujol Roig

Abstract—With their ever-increasing number of users, beyond
5G mobile networks will face the challenge of ensuring a consis-
tent and high-quality user experience in which Feed-Forward
Neural Networks (FFNNs) models run on User Equipements
(UEs) is a key element. This letter proposes an optimization
framework for split computing applications where an FFNN
model is partitioned into multiple sections executed by UEs, edge-
and core-located nodes to resource the overall UEs’ computa-
tional footprint while containing the inference time. An efficient
heuristic strategy for solving the defined split computing problem
is also provided. Numerical results show that the proposed
framework efficiently offloads parts of the considered FFNN
models from a UE to the serving base stations and a core-located
node, which leads to a reduction of UEs’ computation footprint
of over 33%, in the considered settings.

Index Terms—Split Computing, Feed-Forward Neural Net-
work, 5G and 6G.

I. INTRODUCTION

As the evolution of mobile networks progresses beyond 5G,
there is mounting anticipation for the capability to support a
large number of devices, ensure consistent and high-quality
user experiences, and actualize instantaneous, zero-latency
networks. Deep neural networks are being employed for the
optimization of tasks, and the execution of complex inferences
in challenging scenarios such as real-time navigation or user
interactions in extended/augmented reality applications and
gaming [1].

This letter focuses on the issue of offloading the computa-
tional and memory footprint associated with running inference
tasks on pre-trained Feed-Forward Neural Networks (FFNNs)
from low-end User Equipments (UEs) onto other network
entities. However, the surge in predictive accuracy for real-
time operations of modern FFNN models is accompanied by a
spike in computational demands and energy consumption [2].
This makes deploying FFNN models in mobile applications
particularly daunting, given smartphones’ inherent power and
computational limitations.

To overcome these limitations, a prevalent approach in the
industry is offloading the entire computation and processing
tasks to edge and/or cloud-based processing nodes [3]. Al-
though alleviating the computation burden, these edge-/could-
based computing methods do not intrinsically consider the
quality of wireless links in the network. These connections
are susceptible to erratic disruptions due to unpredictable
interference and noise patterns. To this end, some works
advocate creating bespoke, lightweight FFNN models tailored
for resource-limited mobile devices [4]. Yet, besides this not

The authors are with the Advanced Network Research, Samsung
R&D Institute UK (SRUK), UK (e-mail: {a.tassi, o.kolawole,
j.pujolroig}@samsung.com). This work is a contribution by Project
REASON, a UK Government funded project under the Future Open Networks
Research Challengeov (FONRC) sponsored by the Department of Science
Innovation and Technology (DSIT).

always feasible, this practice often compromises the models’
accuracy, resulting in a diminished quality of service. Hybrid
strategies like Split Computing (SC) have emerged [5].

Originally, SC was a technique designed to partition neural
network models into two sections: the head, which operates
at the UE, and the tail, processed at an edge server. The
head section handles initial data processing, while the tail
section manages deeper analyses at the resource-rich edge
server. A unique feature of SC is its dynamic splitting point,
allowing the model to adjust in real time to both fluctuating
wireless channel conditions and the specific constraints of the
UE. This adaptability ensures efficient data transfer, optimized
performance, and reduced energy consumption, making SC
a pivotal solution for deploying neural network models in
resource-constrained environments. Nevertheless, post propos-
als of SC introduce artificial bottlenecks to establish task-
oriented compression and reduce transfer delays [6].

In contrast to the existing SC methods [4]–[6], this letter
proposes a framework for determining an arbitrary number
of splitting points while taking into account the link quality
between the various devices running inference tasks and their
computational capabilities. In the considered system model,
UEs always initiate FFNN inference requests. Due to its com-
putational and memory footprint, an FFNN inference task is
shared among the UE that initiated it, its serving base station,
and potentially a core network-located processing node. The
proposed optimization model accounts for computational and
memory resources available across all the network actors that
may play a part in completing an FFNN inference task. At
the same time, the proposed model minimizes the end-to-
end communication delay associated with the wireless/wired
network links interconnecting the actors. An efficient heuristic
strategy for calculating feasible solutions to the problem above
is also provided.

The rest of the paper is structured as follows. Section II
presents the considered system model. The proposed split
computing optimization problem and the procedure to cal-
culate its heuristic solution are described in Sections III
and IV, respectively. A performance evaluation of the proposed
approach is given in Section V. Finally, in Section VI, we draw
our conclusions.

II. SYSTEM MODEL

We refer to a system model consisting of a set of devices
D = {d1, d2, . . . , d|D|} capable of running (partially or in
full) an inference in a given FFNN model. The compu-
tational capacities of each device are listed in set R =

{(r(CPU)
i , r

(Mem)
i),∀i ∈ [|D|] 1, where tuple (r

(CPU)
i , r

(Mem)
i)

delineates the peak CPU capacity and the utmost memory
allocation for device di, respectively.

1For positive integer K, [K] denotes the set {1, 2, . . . ,K}

2

CPU capacities are articulated as an aggregate of individual
capacities, with r(CPU)

i ∈ [0, 1], representing the allocation on
each CPU core. This is then normalized concerning the highest
CPU capacity across all devices. Similarly, memory capacities
are normalized based on the maximum memory allocation of
any device, thus r(Mem)

i ∈ [0, 1].
The connectivity blueprint of these devices, detailing both

wired and wireless interconnections, is represented by a matrix
W of dimensions |D| × |D|. In this matrix, the element wi,j
is assigned a value of 0 if there is no network link between
device di and device dj . If a link exists, the maximum data
rate is assigned to this link (measured in bit/s).

We now formulate the following assumption:
Assumption 2.1: Device di can directly communicate with

device dj via direct wireless or wired link if and only if j−i =
1. For any pair of devices dt and du (where u−t > 1, t < |D|
and u < |D|), dt can communicate with device du only via the
sequence of intermediate devices [dt+1, dt+2, dt+3, . . . , du−1].

The aforementioned assumption introduces a hierarchical
structure onto the devices in D, which mirrors the scenar-
ios described in Section I where the inference task always
originated in the UE belonging to the lowest performance
tier. Consequently, without loss of generality, we make the
following assumption:

Assumption 2.2: Only device d1 is the device capable of
initializing an inference task.

We model a FFNN model as a tuple (L, C,B). Set L =
{l1, l2 . . . , l|L|} consists of the FFNN model’s layers, where
li (∀i ∈ [|L|]) denotes the i-th layer in the model.

Execution costs of each layer are listed in set C =

{(c(CPU)
i , c

(Mem)
i),∀i ∈ [|L|]}, where tuple (c

(CPU)
i , c

(Mem)
i)

specifies the CPU cost and the memory cost for layer ℓi,
respectively. Both CPU and memory costs are normalized
using the previously mentioned factor. Data generated by each
layer during a single FFNN model inference is detailed in the
matrix |L| × |L| matrix B. Here, the element bi,j represents
the data volume (expressed in bit) traversing connections from
layer li and terminating to layer lj . If no connections exist
from li to lj , then bi,j is set equal to 0.

To align with contemporary FFNN models, we adopt the
subsequent assumption:

Assumption 2.3: For any layer pair li and lj (where i, j ∈
[|L|]), if i < j, then bi,j ≥ 0. On the other hand, if i ≥ j,
then bi,j = 0.

III. PROPOSED OPTIMIZATION FRAMEWORK

We introduce integer optimization variables, denoted by
x = [x1, . . . , xκ], where κ ranges from 1 to κ̂. Each variable
represents a splitting point in an FFNN model. The maximum
number of splitting points is given by 1 ≤ κ̂ ≤ |L|. The
possible values for each optimization variable are defined as:

xt =

{
{1, . . . , (|L| − 1)} for t = 1, . . . , (κ− 1)

{|L|} for t = κ.
(1)

The optimization variables partition the set L into non-
overlapping subsets L(1), . . . ,L(κ̂) as:

L(t) =

{
{1, 2, . . . , x1} for t = 1

{xt−1 + 1, xt−1 + 2, . . . , xt} for t = 2, . . . , κ.
(2)

It is evident that
⋃κ̂
t=1 L(t) .= L. From relation (2), we deduce

that x1 < x2 < . . . < xκ̂.
Considering Assumption 2.2, for notation simplicity, we

assume that FFNN model layers in set L(t) map onto device
dt for t = 1, . . . , κ̂. Thus, κ̂ equals min{|D|, |L|}.

The constraints below ensure that the CPU cost of the FFNN
model layers in L(t) does not surpass the CPU capacity of
device dt:

max
i∈L(t)

{
c
(CPU)
i

}
≤ r

(CPU)
t , ∀t ∈ [κ̂]. (3)

Each FFNN model layer’s inference task can be divided into
sub-tasks for each layer. These sub-tasks run sequentially.
Hence, constraint (3) ensures no layer in L(t) exceeds the
CPU capacity of device t.

Similarly, we ensure that the total memory footprint of the
FFNN model layers in L(t) is within the memory capacity of
device dt: ∑

i∈L(t)

c
(Mem)
i ≤ r

(Mem)
t , ∀t ∈ [κ̂]. (4)

All FFNN model layers on a device are pre-loaded in its
memory, irrespective of the inference sub-task status. Thus,
unlike (3), device t must have sufficient memory to store layers
in L(t).

Considering a system with three devices (|D| = 3) and some
FFNN model layers mapped to device d1 connected to layers
on device d3, due to Assumption 2.1, the network link between
device d1 and device d2 must accommodate data streams from
the first to the second and third devices. Following this logic,
we define the objective function:

Ψ(x;κ) =

κ−1∑
t=1

ψ(xt)︷ ︸︸ ︷
1

wt,t+1

∑
i∈

⋃t
h=0 L

(h),

j∈
⋃κ

u=t+1 L
(u)

bi,j , (5)

where term ψ(xt) refers to the total data volume from device
dt to devices dt+1, . . . , dκ, normalized by the network link
bandwidth between devices dt and dt+1. Specifically, ψ(xt)

denotes the time required to transfer the entire data stream
generated in a single FFNN inference from device dt to device
dt+1. For convenience, we define ψ(xκ) = 0. Notably, (5) only
accounts for the data stream originating from layer partition
dt and directed to layers in another partition with an index
i ≥ t. This aligns with Assumption 2.3, which restricts an
FFNN model ℓ from connecting to layers with indexes less
than or equal to ℓ (for ℓ = 1, . . . , |L|). We assume the time to
transfer the output of an FFNN inference back to device d1 is
negligible, and thus, it is not considered in our model.

For a specified number of splitting points κ, the Split
Computing Optimization (SCO-κ) problem is defined as:

SCO-κ : min
x

Ψ(x;κ), (6)

subject to (3) and (4). (7)

Denote x̂(κ) as the optimal solution of the SCO-κ problem.
Given its system-level implications, we prioritize split com-
puting solutions with the fewest splitting points. Thus, the

SC
O

-κ
So

lv
in

g
Ta

sk

3

Procedure 1 Split Optimization Procedure.
1: procedure SO(κ̂)
2: for κ = 1, . . . , κ̂ do
3: x1 ← 0
4: Initialize: ϵ← 1, δ ← 0, ℓ← 1, ν ← true, ψ ← [∞, . . . ,∞]
5: while ℓ ≤ |L| do
6: if Conditions c(CPU)

ℓ ≤ r(CPU)
ϵ and δ+c(Mem)

ℓ ≤ r(Mem)
ϵ are met then

7: xϵ ← xϵ + 1
8: ψ[ℓ]← ψ(xϵ)

9: δ = δ + c
(Mem)
ℓ

10: ℓ← ℓ+ 1
11: else
12: if ϵ+ 1 > κ then
13: ν ← false
14: break
15: else
16: xϵ ← argmin{ψ}
17: ϵ← ϵ+ 1
18: xϵ ← xϵ−1, ℓ← xϵ−1, ψ ← [∞, . . . ,∞], δ ← 0

19: If Solution is valid (ν == true) then return x
20: return No valid solution found.

globally optimum split computing solution x∗ for the SCO
problem is:

SCO argmin
κ=1,...,κ̂

{
Ψ(x̂(κ);κ)

}
. (8)

IV. PROPOSED SPLIT OPTIMIZATION PROCEDURE

We introduce the Split Optimization (SO) procedure to
heuristically compute a feasible solution for the SCP at (8).
The procedure’s core steps are outlined in Procedure 1 where
each iteration of the for-loop (lines 2-19) attempts to compute
a feasible solution for an instance of the SCO-κ problem for
κ ∈ [κ̂] (SCO-κ Solving Task). Upon finding a solution for
one of the SCO-κ problems, Procedure 1 deems that solution
valid for the SCO problem and returns (line 19).

Procedure 1 attempts to solve each instance of the SCO-κ
problem in the innermost while-loop (lines 5-18). In particular,
this part of the procedure begins by setting the first splitting
point in an FFNN model equal to the first layer (x1 = 1).
The value of x1 is progressively incremented for as long as
constraints (3) and (4) are met (lines 7-10). When any or both
the aforementioned constraints are about to be violated, x1
is set equal to the FFNN layer index minimizing the term
ψ(xt), for t = 1, . . . , κ (line 16). Then, the procedure repeats
by considering the next splitting point (x2), which can only
take values greater than x1 (lines 18 and 7). The while-loop
terminates as soon as all the FFNN model layers have been
considered (namely, ℓ > |L|) or the index ϵ if the currently
considered splitting point exceeds κ. It is immediate to observe
that the while-loop iterates for no more than |L|+κ−1 times.

The following lemma demonstrates that Procedure 1 yields
feasible solutions for the SCO-κ problem.

Lemma 4.1: Given κ ∈ [κ̂], if the while-loop in lines 5-
18 of Procedure 1 concludes due to the violation of the loop
condition at line 5, then the set {x1, . . . , xκ} is a feasible
solution for the corresponding SCO-κ problem.

Proof: The proof is derived from the fact that the while-
loop in lines 5-18 of Procedure 1 minimizes the terms ψ(xt)

for t = 1, . . . , κ− 1. During this minimization, line 6 ensures
constraints (3) and (4) are met.

From Lemma 4.1, it is straightforward to prove the follow-
ing theorem.

(a) Average cost difference vs. |L| (b) Average cost difference vs. |D|
Fig. 1. Normalized average cost difference as a function of the total number of
FFNN model layers and devices; 95% confidence intervals are also included.
Each annotated point lists the average SCIP and SO procedure completion
times (measured on a workstation equipped with a CPU AMD 5995WX with
cores operated at 1.8GHz), the average number of optimization variables and
constraints of the linearized version of the SCO problem.

Theorem 4.1: Let x = {x1, . . . , xκ} be a solution returned
by Procedure 1, where κ ≤ κ̂. Then, x is a feasible solution
for the SCO problem.

V. ANALYTICAL RESULTS

In this section, we refer to an equivalent linear formulation
of the SCO-κ problem that can be obtained by adopting, after
some manipulations, the transformations presented in [7, Eqs.
(4)-(7), (11)-(14), (78)-(81)]. In doing so, the transformed
SCO-κ problem is an integer linear problem equivalent to the
formulation as per (6)-(7).

We optimally solved the linearized SCO problem by calcu-
lating the optimum solution of the SCO-κ problem, for κ ∈ [κ̂]
by means of the Solving Constraint Integer Programs (SCIP)
solver [8]. This makes it straightforward to establish x∗ by
directly solving (8). We remark that Ψ(x∗) and Ψ(x) are the
values of the objective function (5) when the SCO problem
is optimally solved and when the solution is obtained via the
proposed SO procedure, respectively. Since Ψ(x) ≥ Ψ(x∗),
Fig. 1 shows how much a heuristic solution x deviates from
the corresponding optimal solution x∗ by showing the cost
difference Ψ(x) − Ψ(x∗) as a function of the number of an
FFNN model’s layers |L| and available devices |D|.

To effectively investigate the performance of the proposed
SO procedure, in Fig. 1, we considered FFNN models with
a number of layers |L| ∈ [8, 28]. Given an FFNN model,
each layer ℓi is associated with a normalized CPU footprint
c(CPU)
i equal to 1, for i ∈ [|L|] – we regard C as the CPU

normalization factor that is set equal to the largest CPU
capacity among all the devices in D. The normalized memory
footprint of the aforementioned FFNN model’s layer c(MEM)

i

is chosen uniformly distributed at random in (0.01, 1.0] – we
set the memory normalization factor M equal to the largest
memory capacity among all the devices in D. Matrix B is a
direct function of the FFNN model’s layer memory footprint.
In particular, the number of bits bi,j to be transferred from
layer ℓi to layer ℓj , for 1 ≤ i < j ≤ |L|, is set equal to
c(MEM)
i . For j ≥ i+1 and j < |L|, we considered a probability
ŝ ∈ {0, 0.25, 0.5} of bi,j being non-zero. For a given number
of devices and the FFNN model’s layers, we considered I =
104 Monte Carlo iterations. These simulation settings consist
of a variable number of devices |D| ∈ [2, 6] each offering a
normalized CPU capacity r(CPU)

i equal to 1, and a normalized
memory capacity r(MEM)

i = (
∑
i∈[L] c

(MEM)
i)/(|D|− i+1). For

instance, if |D| = 2 then d2 is associated with r(MEM)
2 equal

to the sum of the FFNN model’s layer memory footprints,

4

TABLE I
MAIN SIMULATION PARAMETERS

FF
N

N
M

od
el Name |L| Trainable Parameters × · 10−7

R50, R101,
R152 177, 347, 517 2.56, 4.46, 6.03

Y1, Y2, Y3,
Y4 77, 100, 297, 510 5.99, 5.08, 6.15, 6.44

C
om

m
un

ic
at

io
n

N
et

w
or

k

Deployment type NR TDD, TR 38.901 channel
model [9]

UE to gNB distance 700m with stationary UE
UE and gNB antenna hight 1.5m, 10m

Carrier Components ([Center
Frequency, Bandwidth])

[28GHz, 400MHz], [29GHz,
100MHz]

Network connecting the gNB to
the computing node 10Gbps two-hop wired connection

Transport protocol among FFNN
model’s layers UDP

and d1 is associated with r(MEM)
1 that is only half of r(MEM)

2 .
The normalized bandwidth wt,u of the wireless/wired link
interconnecting devices dt and du, for 1 ≤ t < u ≤ |D|, is
set equal to 1/(|D|− 1) – the bandwidth normalization factor
B is set equal to largest bandwidth value among all the links.
These modeling assumptions capture edge devices’ reduced
memory capacities and communication bandwidths.

Fig. 1a shows the average cost difference (averaged across
all the randomly generated instances of (L, C,B)) as a func-
tion of the number of FFNN models’ layers. For a number of
devices |D| = 2, we observe that the average cost difference
is equal to zero, regardless of the considered number of
FFNN model’s layers and the value of ŝ – thus, signifying
the proposed SO procedure returns a solution associated with
the same cost of the solution returned by SCIP while solving
the linearized version of the SCO problem. As the number of
devices increases to |D| = 3, the average cost difference tends
to remain stable for a given value of ŝ. Overall, as the value of
ŝ increases, the average cost difference also tends to increase.
For instance, this can be observed for ŝ = 0.5, when |L|
increases from 8 to 28, the average cost difference increases
from 0.089 to 0.158. At the same time, for |L| = 28, as the
value of ŝ increases from 0 to 0.5, the average cost difference
increases from 0.011 to 0.158. Overall, if |D| = 3, the value
of ŝ impacts the average cost difference more than the total
number of FFNN model layers. This is not surprising as, for
a relatively small number of devices in the system model, the
structure of matrix B determines the complexity of the SCO
problem. However, as soon as the number of devices increases
to 4, both the number of FFNN model layers and the value of ŝ
have an impact on the overall complexity of the SCO problem,
which results in average cost differences that increases as the
values of |L| and/or ŝ increases. If we consider the case where
ŝ is set to its largest value (0.5), the average cost difference
moves from 0.343 (for |L| = 8) to 0.751 (for |L| = 28).

Fig. 1b shows the average cost difference as a function
of the number of devices |D|, in settings that are equivalent
to the ones considered in Fig. 1a. As an extension of the
considerations made above, we observe that if the number of
the FFNN model’s layers is more than twice the number of
available devices, the average cost difference increases with
both D and ŝ. On the other hand, when the value of |D|
approaches |L|, the average cost difference plateaus. Once
more, this was expected as, for a given value of ŝ, the
more the number of devices approaches the number of FFNN

(a) Normalised Average Cost

(b) Average Splitting Points
Fig. 2. Normalized average cost and splitting points for three ResNet
architectures (R50, R101, and R152) and four YOLO architectures (Y1, Y2,
Y3, and Y4), for |D| = {2, 3}. Fig. 2a includes the 95% confidence intervals
that are superimposed to the average values and scatter plot of the cost
difference data points calculated at the end of each Monte Carlo iteration.

model’s layers, the fewer the number of ways the model’s
layers can be mapped onto the available devices. In turn, this
simplifies the SCO problem. We remark that Fig. 1 shows
average performance gaps as a measure of time normalized by
the term B/M . If we converted the aforementioned average
performance gaps to seconds, we would need to multiply each
data point by M/B, which is likely significantly smaller than
one for practical scenarios.

For |L| = 24 and |D| = {4, 5, 6}, Fig. 1b also highlights the
average time the proposed SO procedure and the SCIP solver
need to solve the (linearized) version of the SCO problem,
along with the average number of optimization variables and
constraints forming the instances of the linearized version of
the SCO problem. When |D| increases from 4 to 6, we observe
that the average number of optimization variables (constraints)
increases by a factor of 2.88 (2.9). Yet, the average time the
SCIP solver (the proposed SO procedure) needs to solve the
problem increases from 7.82 s to 58.73 s (from 0.14 s to 0.35 s)
– thus, reinforcing the need of formulating a heuristic strategy.

In the remainder of this section, we will benchmark the
performance of the proposed SO procedure across a selec-
tion of widely known FFNN models summarized in Tab. I.
In particular, we considered three Residual Neural Network
(ResNet) architectures (hereafter referred to as R50, R101, and
R152) [10] and versions 1-4 of You Only Look Once (YOLO)
(hereafter referred to as Y1, Y2, Y3, and Y4) [10]. To establish
a consistent cost model across the considered FFNN models,
we set each model’s layer CPU and memory footprint equal
to the number of trainable parameters of each layer. CPU and
memory normalization factors C and M have been calculated
as in the case of Fig. 1.

Figs. 2 and 3 consider a system model consisting of a
stationary UE that is served by a gNodeB (gNB) by means
of a 5G NR RAN. The gNB is connected to a 4G Evolved
Packet Core (EPC) core network. In this setting, the FFNN
model inference task is initiated by the UE, and it may be
executed in the gNB and in a dedicated computing node that
is ideally part of the EPC. As such, for the purpose of our
performance model, the devices that can run (partially or in

5

A
v

g
.

M
em

.
F

o
o

tp
ri

n
t

[%
]

(a) Average Memory Footprint

A
v
g
.
C

P
U

 F
o
o
tp

ri
n
t

[%
]

(b) Average CPU Footprint
Fig. 3. Average memory and CPU footprints and UE’s footprint reductions
associated with the numerical results shown in Fig. 2.

full) an inference in a given FFNN model can either be the
UE and gNB (|D| = 2), or the UE, gNB and a computing
node part of the EPC (|D| = 3). To account for the variability
of the propagation conditions between the UE and gNB, we
set I = 104. Key simulation details are summarized in Tab. I.

Fig. 2a compares the (normalized) average cost of the
considered ResNet and YOLO FFNN models. In the case of
the ResNet FFNN models, the proposed SO procedure ensures
a similar average cost among the models, regardless of the
considered number of devices and in spite of the considerable
difference in terms of the number of FFNN model’s layers –
R50 consists of 175 layers while R152 is associated with 515
layers (see Tab. I). This signifies that the SO procedure can
efficiently establish splitting points aiming at minimizing the
overall cost (subject to meeting the capacity constraints). In
the case of the YOLO FFNN models, we observe that Y1 and
Y2 are relatively similar in their FFNN model structure, which
leads to similar average costs. On the other hand, the number
of the model’s layers and the density of interconnections
among layers associated with Y3 and Y4 are higher than in the
case of Y1 and Y2 (see Tab. I). This results in larger average
costs for the Y3 and Y3 models. Yet, despite Y4 consisting of
nearly twice as many layers as Y3, the proposed SO procedure
returns splitting solutions with similar cost.

Fig. 2b shows the splitting points solutions x calculated
with the proposed SO procedure. In particular, for each of
the considered FFNN models, the figure shows the average
splitting points solution defined as (

∑I
i=1 x[i])/I , where x[i]

signifies a solution returned by the SO procedure at the end of
the i-th Monte Carlo iteration. In the case of the considered
ResNet models, the proposed SO procedure returns splitting
solutions where most of the FFNN model’s layers are mapped
onto the UE (case |D| = 2) or the UE and the gNB (case
|D| = 3). However, as the complexity of the FFNN model
increases, the SO procedure establishes solutions where, on
average, most of the model’s layers are mapped onto the gNB
and/or a dedicated computing node in the EPC. For instance,
this is the case of Y4 where only 38.9% of the layers are
mapped onto the UE and the remaining onto the gNB and the
dedicated computing node in the EPC, for |D| = 2 and 3.

Fig. 3 compares the average memory and CPU footprints as-
sociated with results shown in Fig. 2. In particular, with regard
to the assumption made at the beginning of this section, if |D|
is equal to 2 (3), the UE is associated with 33.3% (18.16%) of
the overall memory and CPU capacity across the devices. In
contrast, the gNB is associated with 66.6% (27.27%), while
the dedicated computing node in the EPC is associated with
54.55% (when |D| = 3). With regards to Fig. 3a, in the
case of the ResNet models, regardless of the value of |D|,

the SO procedure tends to favor solutions associated with a
larger footprint on the UE. However, as the complexity of
the FFNN model increases, the SO procedure tends to return
splitting solutions associated with a reduced memory footprint
on the UE and/or the gNB. This is particularly evident in
the case of the YOLO FFNN models – in the case of Y4
and |D| = 3 only 1.7% and 5.9% of the average memory
footprint of the returned solution is associated with the UE
and gNB, respectively. Similar considerations apply to the
average CPU footprint shown in Fig. 3b. Fig. 3 also shows the
average UE’s memory and CPU footprint reduction (ρ(Mem)

|D|

and ρ(CPU)
|D| , respectively) defined as the average reduction of

the memory/CPU footprint experienced by the UE in the case
the UE had enough memory and CPU capacity to run FFNN
model inferences on its own. In particular, we observe that
the SO procedure ensures an average UE’s memory (CPU)
footprint reduction of at least 33.6% or 36.6% (66.6% or 60%)
for |D| equal to 2 or 3, respectively.

VI. CONCLUSIONS

We developed a novel optimization framework for SC
applications that divides the FFNN model into sub-sets and
executes them across a variable number of devices, starting
from a UE and progressively considering devices further from
the edge while minimizing end-to-end communication delay
from wireless/wired network links. We also proposed an effi-
cient heuristic approach to solve the formulated optimization
problem. The deviation between solutions calculated with the
proposed heuristic strategy and a branch-and-cut approach is
marginal in the considered settings. Our numerical results
considered 5G cellular network set-ups with a number of
devices with heterogeneous computational capacities. We also
validated the proposed heuristic procedure on multiple state-
of-the-art FFNN models with a heterogeneous number of
layers, trainable parameters, and model’s layer interconnec-
tions. Our numerical results show that the proposed heuristic
procedure establishes valid splitting points while fulfilling
device-specific computational capacity constraints.

REFERENCES

[1] Hexa-X, “Final 6G Architectural Enablers and Technological Solutions,”
H2020-ICT-2020-2, Deliverable D5.3, Apr. 2023.

[2] M. Tan and CVPR, “Efficientdet: Scalable and Efficient Object Detec-
tion,” in Proc. of IEEE/CVF CVPR, 2020.

[3] X. Wang et al., “Convergence of Edge Computing and Deep Learning:
A Comprehensive Survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 2,
pp. 869–904, 2020.

[4] T. Liang et al., “Pruning and quantization for deep neural network
acceleration: A survey,” Neurocomputing, vol. 461, pp. 370–403, 2021.

[5] A. Bakhtiarnia et al., “Dynamic Split Computing for Efficient Deep
Edge Intelligence,” in Proc. of IEEE ICASSP, 2023.

[6] Y. Matsubara et al., “Split Computing and Early Exiting for Deep Learn-
ing Applications: Survey and Research Challenges,” ACM Computing
Surveys, vol. 55, no. 5, pp. 1–30, 2022.

[7] M. Asghari et al., “Transformation and Linearization Techniques in
Optimization: A State-of-the-Art Survey,” Mathematics, vol. 10-2, 2022.

[8] K. Bestuzheva et al., “The SCIP Optimization Suite 8.0,” Zuse Institute
Berlin, ZIB-Report 21-41, December 2021. [Online]. Available:
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309

[9] 3GPP, “Study on Channel Model for Frequencies from 0.5 to 100 GHz,”
3rd Generation Partnership Project (3GPP), TR 38.901, Mar. 2022.

[10] T. Diwan et al., “Object Detection Using YOLO: Challenges, Architec-
tural Successors, Datasets and Applications,” Multimed. Tools Appl., p.
9243–9275, 2022.

