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Abstract—Extensive research is underway to meet the hyper-
connectivity demands of 6G networks, driven by applications
like XR/VR and holographic communications, which generate
substantial data requiring network-based processing, transmis-
sion, and analysis. However, adhering to diverse data privacy and
security policies in the anticipated multi-domain, multi-tenancy
scenarios of 6G presents a significant challenge. Federated Analyt-
ics (FA) emerges as a promising distributed computing paradigm,
enabling collaborative data value generation while preserving
privacy and reducing communication overhead. FA applies big
data principles to manage and secure distributed heterogeneous
networks, improving performance, reliability, visibility, and se-
curity without compromising data confidentiality. This paper
provides a comprehensive overview of potential FA applications,
domains, and types in 6G networks, elucidating analysis methods,
techniques, and queries. It explores complementary approaches
to enhance privacy and security in 6G networks alongside FA
and discusses the challenges and prerequisites for successful
FA implementation. Additionally, distinctions between FA and
Federated Learning are drawn, highlighting their synergistic
potential through a network orchestration scenario.

Index Terms—Federated Analytics, 6G, Networking, Federated
Learning

I. INTRODUCTION

With 5G technology deployment and global standardisation,
industry and academia efforts are dedicated to researching
future 6G networks to meet projected demands [1]. Societal
digitisation, hyper-connectivity, and global data-driven ecosys-
tems drive standardisation and strategic considerations for 6G
networks to address communication requirements [2]. Future
6G networks are expected to be more distributed, hetero-
geneous, intelligent, and closer to end-users [1]. Achieving
the ambitious 6G vision, including global coverage, diverse
applications, robust security, spectrum utilisation, sensory in-
tegration, and full digitisation, requires further exploration of
unresolved issues and research directions [2].

A key challenge in 6G networks arises from data-related
issues due to advances in sensing, communication, and edge
computing, resulting in a surge of data generation, transmis-
sion, and analysis within edge-cloud environments [3]. Data
is invaluable to Communication Service Providers (CSPs),
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with the top 50 carriers holding data from over five billion
consumers [4]. Research indicates data analytics will play a
pivotal role in advancing network infrastructure towards 6G,
offering rapid feedback, aiding troubleshooting, and convert-
ing raw data into actionable knowledge for automation sys-
tems [5]. Distributed analytics provide predictive capabilities,
guiding algorithmic decisions to enhance system efficiency and
infrastructure management, and can be integrated into archi-
tectural elements of 6G Network Data Analytics Functions
(NWDAF) [6].

The presence of heterogeneous data owners across diverse
domains, multiple tenancies, and various technologies in 6G
networks raises concerns about data privacy and confidential-
ity [7]. The conventional edge-cloud computing paradigm, in-
volving central server analysis, is insufficient for evolving ap-
plication requirements [3]. Federated Analytics (FA) emerges
as a promising distributed computing paradigm, enabling col-
laborative value generation from data across multiple remote
entities while preserving local data for privacy and reduced
communication overhead [8]. FA uses big data principles and
tools to manage and secure distributed and diverse data net-
works effectively, improving network performance, reliability,
visibility, and security while preserving confidentiality [3].

In this paper, our main focus is to showcase the benefits and
applications of FA to tackle privacy and confidentiality con-
cerns that arise from the diverse ownership at administrative,
operational, and user levels, as well as the presence of various
cloud and edge devices in 6G networks. We offer a thorough
overview of FA in 6G networks, including its potential appli-
cations, domains, and types, as well as an exploration of data
analysis methods, techniques, and queries. We also explore
complementary approaches that enhance privacy and security
when combined with FA. Furthermore, we discuss the open
challenges for successful FA implementation in 6G networks.
Lastly, we differentiate FA from Federated Learning (FL),
exemplifying their synergistic potential through a network
orchestration scenario.

The rest of this article is structured as follows. Section II
explains 6G Networks, FA, and their distinctions from FL.
We introduce a taxonomy for 6G FA and an implementation
framework. We demonstrate the framework’s working princi-
ples through an example and outline research challenges and
open issues. In conclusion, we sum up this article.
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II. PRELIMINARIES AND RELATED WORK

A. 6G Networks

The implementation of future services in 6G networks
relies on seamless, instant, and virtually unlimited wireless
connectivity [2]. Set to materialize around 2030, 6G addresses
challenges beyond the capabilities of backward compatibility
with 5G NR evolution, attracting substantial attention from
academia and industry with extensive research on 6G require-
ments and vision [1].

Key 6G requirements span technical aspects and application
scenarios, encompassing data rate and delay with peak rates
of up to 1 Tbps using cutting-edge technologies like THz
and optical wireless communications [2]. Additionally, factors
such as user-experienced data rate, latency, security, and high
mobility are critical in 6G systems [1]. With an anticipated
surge in data volumes (as showcased in Figure 1), efficient
data management, optimisation, privacy, and security are key
in 6G networks [2], [1]. The potential of 6G applications spans
diverse domains, including IoT, smart grid 2.0, holographic
telepresence, UAV-based mobility, extended reality, connected
and autonomous vehicles, and intelligent healthcare [1]. The
integration of AI further accelerates 6G’s evolution through
scalable and trustworthy edge AI systems, decentralised ML
models, AI of Things, and Haptic communication [1]. As
driving applications generate substantial data, privacy and
confidentiality considerations become paramount [1]. Proper
evaluation of Key Performance Indicators (KPIs) will distin-
guish 6G networks from 5G counterparts in data rate, delay,
capacity, coverage, service efficiency, and diversified service
evaluation [2] to meet the demands of an intelligent and hyper-
connected society.

B. Federated Analytics and Federated Learning

FA is an emerging distributed knowledge aggregation
paradigm designed to address data governance and privacy
concerns related to data-sharing [8]. FA conducts collaborative
statistical analyses across multiple distributed nodes (referred
to as FA clients) without exchanging raw data among the par-
ties [3], [7]. Typically, FA involves a central querier (referred
to as the FA server) aiming to obtain knowledge or answer
questions based on data distributed across various clients [8].
FA clients receive the query, perform data-oriented tasks using
their local data, and upload abstracted results to the server [7].
In summary, as described in [8], FA’s objective is for an FA
server to respond to query Q such as:

Q(D) = Fω(D1,D2, ...,DN ) (1)

where D : {Di}ni=1 corresponds to the private raw data
at the N ∈ R data owners (i.e., FA clients). Fω refers to
parameterised function describing the target query [7].

Similar to FA, FL leverages decentralised data processing
to address privacy concerns and enable collaboration among
multiple entities. FL focuses on training ML models in a
distributed privacy-preserving fashion [9]. In FL, the model
is trained locally on the user’s device or at the edge of the

network, and only the model updates are exchanged with a
central server or aggregator. The central server aggregates the
updates from multiple devices and uses them to improve the
global model [4]. Considering the formulation of equation (1),
FL can be viewed as a complex FA query on implemented at
distributed data owners when the function Fω describes an
optimisation learning problem defined as:

Fω(D1,D2, ...,DN ) = argmin
ω

N∑
n=1

Kn

K

∑
(x,y)∈Dn

ℓ(f(x;ω), y)

(2)
where K represents the total number of data samples in

all clients combined and Kn represents the number of data
samples in client n ∈ N . The main goal is to minimise for all
clients the weighted sum of ℓ(f(x;ω), y) that represents the
loss function of model f parameterised with ω which maps
the discrepancy of predicted output and the true label y for
input x [7], [8].

Although FA and FL share federation characteristics, such
as local model computation, central model aggregation, and
interactive updates, they differ in their objectives and design
details. While FL focuses on training ML models, FA is aimed
at non-training data analytics tasks. As a result, the design
details of FA vary due to the diverse nature of data analytics
tasks [7]. In 6G networks, FA and FL will play a crucial role
for empowering intelligent nodes to learn and adapt locally,
leading to reduced latency, improved network efficiency, and
enhanced user experiences while maintaining privacy and will
be explored in this document.

C. Related Work

In recent years, several works have emerged proposing the
use of FA and related techniques in networking and edge
computing contexts. Table I summarises a few important con-
tributions and position our work with respect to the literature.

Wang et al. [3] present a comprehensive overview of FA,
including a basic taxonomy and an abstract operating model,
in addition to proposing a high level architecture for FA that
takes into consideration not only privacy and security concerns
but also basic resource and peer management challenges.

Zhao et al. [10] propose a semihierarchical architecture
for IoT data analytics, utilizing edge nodes as intermediary
servers to aggregate models from local devices, improving
convergence speed and reducing round-trip communications.
They employ a random consensus algorithm for sharing model
weights between servers. Wang et al. [7] present a mechanism
for performing FA in industrial IoT, considering data het-
erogeneity among clients. Skewness estimation for local data
helps select a subset of clients for FA computations, resulting
in improved accuracy and convergence.

Samdanis et al. [5] explore analytics in closed-loop automa-
tion systems’ significance for next-gen network infrastruc-
ture. They propose a microservice-based AI and ML model
architecture deployable in distributed or centralised modes.
The study investigates inaccuracies due to data property
changes (i.e., concept drift) and reviews detection, prediction,
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TABLE I: Comparison∗ of studies about FA and Networks

FA or FL 6G Architecture Methods Applications Types Domains Privacy and Security
Wang et al. [3] FA ✗ ✓ ✗ ✓ ✗ ✗ ✓
Zhao et al. [10] FA ✗ ✓ ✗ ✓ ✗ ✗ ✓
Wang et al. [7] FA ✗ ✗ ✓ ✓ ✗ ✓ ✗
Samdanis et al. [5] FL ✓ ✗ ✓ ✗ ✓ subset ✗
Zhou et al. [6] FL ✓ ✓ subset ✓ subset subset ✓
Al-Quraan et al. [11] FL ✓ ✓ subset ✓ subset subset ✓
This work FA ✓ ✓ ✓ ✓ ✓ ✓ ✓

∗ FA methods, applications, types, domains and privacy and security concerns are described in detail in Section III-B.

and adaptation techniques. Zhou et al. [6] examine FL for
implementing NWDAFs in 5G/6G. They propose a partial
homomorphic encryption (HE) scheme for privacy and se-
curity preservation. A key management server generates and
distributes encryption/decryption keys among FL participants.
The scheme, validated in simulations, outperforms a prominent
differential privacy algorithm without significant changes in
prediction accuracy. Nevertheless, HE increases the computa-
tional time and resource requirements.

Al-Quraan et al. [11] provide a comprehensive summary
of FL techniques in 6G communications. Their systematic
review covers enabling technologies, 6G drivers, and technical
integration into network management systems. They com-
pare the classical client-server architecture with a hierarchical
client-edge-cloud FL approach and explore decentralisation
alternatives like blockchain and peer-to-peer methods. The
paper discusses client selection, incentivisation, data augmen-
tation, and automatic labelling, addressing communication cost
reduction, resource allocation, latency, and convergence time.
The authors also outline privacy and security enhancement
techniques for data sharing.

Although the majority of works on FA (such as [3],
[10], [7]), consider edge computing and some network-related
aspects, they don’t specifically relate to either 5G or 6G
functionalities or take advantage of the infrastructure provided
by these platforms. In this paper, we review and expand on
the taxonomy presented in [3] and explore the ramifications

of FA from a network-centric point of view, focusing on its
implications for the development of future 6G infrastructure.

On the other hand, works that explicitly target network
infrastructure management and orchestration or specific 5G/6G
applications (e.g. [5], [6], [11]), tend to consider forms of
distributed analytics that do not fully take advantage of the
available FA techniques, or restrict themselves to FL im-
plementations. In this paper, we provide a comprehensive
review of different types and methods of FA that can be
applied to 6G, covering fundamental privacy and security
aspects and outlining how these techniques can be applied to
support deployments in either single or multiple administrative
domains.

III. FEDERATED ANALYTICS FOR 6G NETWORKS

A. An Architecure for Federated Analytics for 6G Networks

6G systems face privacy and confidentiality challenges
due to distribution, heterogeneity, and diverse ownership at
multiple levels. FA offers collaborative data analysis while
maintaining privacy, with data decentralised across devices,
reducing network data transfer. A vital component for FA in
6G is an architectural framework that integrates abstractions,
supports functional segregation, and accelerates application
development. Efficient peer administration, data structuring,
and privacy governance are crucial to meet FA’s unique de-
mands. Figure 2 depicts the proposed hierarchical framework.
Analytics can be performed in each of the different distributed
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Fig. 2: Federated Analytics for 6G Architecture

FA Clients (FC) and then sent to central to be aggregated by
the FA Server (FS).

In 6G networks, extreme edge scenarios envision multi-
tenancy1 where users can request network infrastructure-as-
a-service for task-offloading, introducing data that requires
privacy and confidentiality handling. Each tenant can act
as an FC, performing local data analytics to feed higher-
level processes through an FS for resource monitoring and
allocation, addressing privacy from an individual perspective.

At the edge level, 6G networks are expected to be highly
autonomous, supporting different access technologies for a
connected world. Multi-access and multi-administrative do-
main setups will involve heterogeneous services owned by
different entities, requiring privacy-preserving FA at various
levels for data confidentiality. Privacy concerns will be tackled
from operational and administrative viewpoints.

In the cloud level, 6G networks will involve multi-
administrative domain scenarios, where ensuring data privacy
and confidentiality becomes complex as domains collaborate
and share resources. Privacy concerns will be addressed oper-
ationally and administratively, developing robust mechanisms
to protect data across diverse ownership structures and ad-
ministrative boundaries. FA will play a vital role in enabling
secure data sharing and processing, preserving privacy while
facilitating higher-level insights and decisions.

The proposed framework aims to apply FA in 6G networks,
addressing privacy concerns comprehensively from end-users
to administrative and organisational domains.

B. Federated Analytics for 6G: A Taxonomy

This section presents a taxonomy (Figure 3) for classifying
and organising concepts related to FA in 6G networks that can
be exploited using the proposed architecture.

1) Intelligence: The 5GPPP Architecture WG2 identifies
various networking stakeholders, such as CSP and Virtual Ser-
vice Providers (VSP), across different organisational domains

1We refer a tenant as the user owner of a task.
25GPPP View on 5G Architecture accessed on 01/08/2023.

with distinct business and operational responsibilities. Privacy
concerns arise when these stakeholders use network data to
enhance their operations, market understanding, and customer
insights. FA in 6G networks allows stakeholders to access
real-time data for privacy-aware Business Intelligence (BI) and
Automation Intelligence to optimise decision-making, stream-
line operations, and automate tasks for resource allocation and
innovative industry solutions.

2) Types: FA encompasses various data analysis techniques
within a distributed network of data sources. FA types include:
descriptive analytics for understanding historical data and
highlighting key summary statistics, diagnostic analytics to
identify patterns and reasons behind past events.

Predictive analytics uses statistical and machine learning
models to make future event predictions without centralizing
sensitive data. Prescriptive analytics goes further, offering
data-driven recommendations for desired outcomes while re-
specting data privacy. FA allows collaborative analysis of dis-
tributed FC data, maintaining data security and decentralizing
sensitive information.

3) Domains: In 6G networks, heterogeneous domains de-
fine administrative or functional boundaries for network seg-
ments, facilitating policy enforcement, security, and access
control. Multi-domains serve different organisational units,
enabling tailored access control. Cross-domains are managed
by different organisations, supporting data exchange with au-
tonomy and security. Intra-domains are local segments under
a single authority, enhancing communication and resource
sharing. FA benefits these domains in 6G networks. For multi-
domains, FA enables collaborative data analysis and insights
generation while preserving data privacy. In cross-domains,
FA promotes secure data sharing and analysis, facilitating
effective data collaboration. In intra-domains, FA enhances
data analysis by pooling resources and knowledge, generat-
ing comprehensive insights and optimised resource allocation
without centralising sensitive data.

4) Methods: In FA, various aggregation techniques com-
bine data from different sources with data privacy and security.
Key techniques include cumulative aggregation, which accu-
mulates values over a specific period or data points. Addition
aggregation involves adding values of the same data attribute
across sources, calculating the total sum without revealing
individual data points. Lastly, average aggregation computes
the mean or average value of a data attribute across sources,
revealing overall averages without exposing data values.

An FA query (Eq. (1) in Sec. II) represents an FS question to
distributed FCs, falling into three categories [8]: a) Statistical
testing queries aim to discover statistical properties from
private data. b) Set queries focus on data associations like
intersections and unions. c) Matrix transformation queries
include dimensionality reduction using methods like principal
component analysis and projections.

5) Applications: In 6G networks, FA enables decentralised
data processing and analysis, ensuring privacy and efficiency
for decision-making among multiple entities. It supports ap-
plications such as metadata extraction, where an FS queries

https://5g-ppp.eu/wp-content/uploads/2021/11/Architecture-WP-V4.0-final.pdf


Fig. 3: Federated Analytics for 6G Taxonomy

an FC to gather local data insights, like the number of
dataset classes and features. Performance monitoring allows
FCs to report ML model or service performance through local
analytics. Verification and Validation involve focused queries
on local processes, giving FS a global system performance
view without centralising raw data.

Intrusion and anomaly detection benefit from FA’s collabo-
rative approach in network environments. Distributed intrusion
detection systems collectively analyse data while preserving
privacy, enhancing threat detection and secure local anomaly
detection for improved network security. FA’s knowledge
extraction optimises network resources and capacity planning
during orchestration processes. Local analytics provide in-
sights into process and infrastructure status, enabling end-to-
end analytics for data-driven decisions at the automation or
business level.

6) Privacy and Security: are crucial in 6G, serving both
end users and mission-critical vertical industries. FA supports
network-wide data analytics without sharing local data, bene-
fitting 6G in two key ways. Firstly, within various administra-
tive domains (e.g., private and public networks, diverse edge
device providers), FA enables analytics within each domain
and consolidates insights for global results. Secondly, given
6G’s multi-tenancy nature, data sharing between tenants is
restricted. FA allows network management insights encom-
passing all tenants without data sharing, making it a promising
paradigm for privacy-preserving data analytics in 6G.

However, there have been recent debates in FA regarding the
potential privacy leakage of local data when sharing insights

learned from local data in FA, despite the data not being
shared outside its original region. Some existing approaches
address this privacy issue, e.g., cryptography methods like
HE and secure multi-party computation, privacy-enhancing
technologies like differential privacy, and secure aggregation.
Additionally, tampering with insights during FA’s aggregation
by adversaries can impact FA’s performance, but this issue
can be mitigated using technologies such as blockchain and
Byzantine Fault Tolerance.

IV. EXAMPLE SCENARIO: CROSS-DOMAIN INTELLIGENT
ORCHESTRATION

A. Scenario

Throughout this document, it’s emphasised that 6G net-
works will have a vast array of heterogeneous devices and
technologies from various operational and administrative do-
mains, raising significant privacy concerns related to data own-
ership and confidentiality. In this context, FA and FL emerge as
promising privacy-preserving distributed approaches, enabling
valuable insights from local client data without centralising
raw data, ensuring data security, and promoting collaborative
intelligence.

An example of FA and FL application in 6G networks is
cross-domain intelligent orchestration, involving the efficient
allocation of computing resources across different domains.
In this scenario (Figure 4), various VSPs utilise shared infras-
tructure with different access technologies from the INSP to
provide services. Different SPs can share virtual and physical
resources in 6G to meet service requirements, which can
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TABLE II:
Federated Analytics: Statistical analysis without centralising datasets. VNF Firewall dataset from [12].

Distributed Datasets: Skewness per Feature

Client N sam. N feat. CPUUTP MEMUTP RTT MIR CPU MEM In RX, OuT TX LINK Selected?

1 895 9 -0.7097 0.1806 -0.5809 0.8565 0.3008 -0.0123 -0.0969 -0.1929 -0.0415 yes
2 400 9 -0.7926 0.1822 -0.4863 0.9215 0.3448 0.0325 -0.0829 -0.1818 -0.0623 yes
3 100 9 -1.0135 0.0411 -0.3778 1.0952 0.4609 0.1288 0.039 0.1132 0.1107 no
4 120 9 -0.6359 0.0419 -0.6004 1.0823 0.2961 -0.1357 -0.1723 -0.0749 -0.216 no
5 400 9 -0.6633 0.1731 -0.5606 0.9464 0.3187 0.0603 -0.0401 -0.2112 -0.1681 yes
6 330 9 -0.7884 0.1024 -0.5401 0.786 0.3227 0.0534 -0.1275 -0.1296 -0.0588 yes
7 580 9 -0.7906 0.1078 -0.5066 0.8427 0.3451 0.0284 -0.0409 -0.1009 -0.0317 yes
8 780 9 -0.715 0.1878 -0.6041 0.8647 0.2915 -0.0274 -0.1168 -0.1914 -0.0407 yes
9 500 9 -0.666 0.2334 -0.6553 0.8505 0.2909 -0.0154 -0.0884 -0.0907 -0.074 yes

10 290 9 -0.8571 0.2951 -0.4723 1.002 0.4308 -0.1155 -0.0466 -0.2576 -0.0057 no

involve deploying various Virtual Network Functions (VNFs).
The challenge is selecting the optimal host domain, edge
nodes, and resources for deploying VNFs while adhering to
VSP data ownership policies.

FA can enhance network management and resource opti-
misation while preserving data privacy. From the proposed
architecture (Section III), an FS can be deployed at the cross-
domain orchestrator level, which can be in the cloud. FCs are
deployed in different virtual edge nodes across various VSPs
on the INSP’s physical edge nodes. Various FA queries Qi run
over different edge nodes from different domains to gather
knowledge about local resources and data availability for
VNF profiling used in intelligent orchestration [12]. Statistical
testing queries analyse FC dataset quality to determine eligible
clients for joining an FL process to create VNF profiles, while
set queries assess FC similarities and suitability for the FL
system. Matrix transformation queries reduce dimensionality
for selected clients before initiating the FL process. VNF
profiles empower intelligent orchestration. Profiling predicts
the maximum network load a VNF can handle and estimates
required resources like CPU, memory, and network to meet
performance targets and workloads [12]. This knowledge

aids effective resource allocation and capacity planning while
addressing privacy concerns in cross-domain orchestration.

B. Experiment Definition and Evaluation

We demonstrate the proposed approach’s feasibility with a
case study prototype implementation for VNF profiling in a
Federated pipeline on a real network testbed based on the
infrastructure setup from our previous work [9].

1) Dataset, model, and task: We use the Virtual Firewall
dataset from [12]. This dataset is comprised of 9 features,
8 predictors and the target. The predictor variables are CPU
utilization (CPUUTP), Memory utilization (MEMUTP), Net-
work latency (RTT), VNF maximum input rate (MIR) and
Packet loss (In RX, Out Tx), VNF resource configurations
like CPU cores (CPU), Memory (MEM), and the target is the
Link Capacity (LINK). We partition the dataset randomly to
generate sub-datasets for each client. For this experiment, we
use a simple fully connected network with 3 hidden layers with
24, 12, and 6 neurons respectively. For the federation processes
(i.e., FA and FL), we use the framework Flower built on top of
the Kubernetes setup of [9]. The objective of the experiment
is to use FA to examine the datasets of 10 clients scattered in



the network. Based on this analysis, we select the clients that
will be part of the FL process for cross-domain profiling.

2) Experimentation and results: We use FA to conduct
statistical data analysis on different edge nodes. We perform
statistical queries to analyse data distribution and character-
istics of clients without centralising the data. We specifically
want to find the data points (Number of samples), the attributes
(Number of features), and the skewness of the features in the
individual FA clients’ datasets. Skewness is a measurement of
the distortion of symmetrical distribution or asymmetry in a
data set. Skewness can be quantified as a representation of
the extent to which a given distribution varies from a normal
distribution. The FA server accumulates the results into a
matrix that is used for the analysis. This descriptive analysis
allows us to choose the clients best suited for the FL process.

Table II showcase the results of the FA process. We can
observe that the different number of samples (N sam.) ranges
between 100 and 895. The number of features (N feat.) is 9
for all clients. Regarding skewness, we can observe that none
of the data points per feature follows a normal distribution.
The distributions are either skewed to the right(+) or left(-).
Based on this analysis, different approaches can be used for
normalising the data distribution of the dataset. For example,
data augmentation and balancing. However, in our experiment,
we want to point out the importance of the data distribution for
the FL process. We select clients with datasets with a greater
number of samples (< 300) and less skewed data distributions
(−1 < x < 1). Based on these criteria, the clients selected for
the FL are 1, 2, 4, 5, 6, 7, 8, and 9.

We then assess the performance of standard FL compared to
FA-enhanced FL. Figure 5 showcase the results. It is demon-
strated that by selecting clients based on their data distribution
and characteristics, we enhance the performance of cross-
domain profiling reducing the global Mean Absolute Error
(MAE) loss for predicting the LINK capacity. Mapping back to
our taxonomy of Section III, in this experiment, we showcase
how to perform statistical testing queries and accumulate the
results for descriptive analytics to analyse each client dataset.
Moreover, FL cross-domain profiling can be categorised as
predictive analytics used for intelligent orchestration aiming
at automation intelligence.

V. RESEARCH CHALLENGES AND OPEN ISSUES

A. FA for 6G Challenges

1) FA potential future applications in 6G networks: When
compared to previous telecom generations, 6G presents unique
challenges due to new physical channel designs (higher fre-
quency bands and transmission rates) and radio network ar-
chitectures (e.g., “cell-free” environments, smart surfaces, and
mobile/temporary access points). These complexities demand
advanced monitoring and analytics systems for control and
management algorithms. 6G also shifts focus towards Key
Value Indicators (KVIs) and Quality of Experience (QoE) met-
rics, requiring novel mathematical and computational models
for estimation and quantification. FA is considered a crucial
enabler for addressing these 6G challenges.
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For example, regarding Ultra-Large-Scale MIMO [2], FA’s
resource management capabilities can assist in optimising
resource allocation and scheduling, enhancing spectral effi-
ciency by leveraging data from distributed antennas and UEs.
Furthermore, combined with FL, FA can potentially serve
for interference mitigation by sharing relevant information
among base stations and coordinating beamforming strategies.
In Integrated Sensing and Communication (ISAC) [2], FA can
improve spectrum utilisation through data analysis from sen-
sors and communication devices, assisting dynamic spectrum
management. In the Open RAN landscape, FA can enhance
network optimisation and offer insights into RAN component
performance, enabling self-configuration and optimisation. To-
gether with FL, FA can support cooperative resource sharing
among O-RAN operators. In the context of Reconfigurable
Intelligent Surfaces (RIS) [2], FA can contribute to the analysis
of environmental data to optimise surface deployment. When
combined with FL, it enables collective learning and adapta-
tion among these surfaces. In all the previously mentioned 6G
scenarios FA combined with FL can enhance automation and
intelligence with a main focus on privacy preservation.

Nevertheless, 6G also imposes technical difficulties to the
deployment of FA techniques. In particular, 6G high speeds
and low latency in data transmission depend on the develop-
ment of novel FA algorithms that are more efficient, more pre-
cise and more reliable. Moreover, the high level of distribution
and diversity of 6G’ computing capabilities (considering not
only edge and cloud computing but also connected devices)
require new FA designs for increased robustness and hyper-
scalability.

2) FA in Goal/Task-oriented Communications: Goal-
oriented communications (also referenced as task-oriented
commutations [13]) involve Semantics of Information (SoI),
capturing properties of information related to its “goal” and
“purpose” in exchanges. These paradigms enable the design
of more efficient systems that process and transmit only the
most significant information, conserving energy and channel



resources without sacrificing effectiveness in achieving com-
munication goals [13]. FA can potentially be used for seman-
tics extraction to identify the meaning or context from unstruc-
tured data to understand its underlying concepts, relationships,
and relevant information while maintaining data locally. The
extracted semantics or insights can then be aggregated at a
higher level without exposing sensitive details about individual
data points. This ensures that privacy is maintained throughout
the process, as the raw data never leaves the individual entities’
boundaries. Goal-oriented and semantic communications are
still in the early stages and the convergence with FA requires
further research.

B. Federated Data Analytics Challenges

1) Federated analytics with non-iid data: Previous work
about FL in non-iid data has been widely covered. However, in
the 6G era, data fragmentation will become more pronounced,
as we know from Big Data to massive amounts of small-
sized data [5]. How to use FA to deal with massive small-
sized data and extract knowledge from them is a promising
research area. In FedACS [7], the authors give three modules:
insights derivation, skewness estimation and client selection.
How to make clients generate insensitive insights about their
local data, and make the server aggregates the insights from
non-iid data is still under research. How to standardise the way
to get data insight into FA is also a direction to be studied.

2) Federated analytics with synthetic data: Under the
secure condition that the raw data should be kept locally,
the FA algorithm can try to make clients generate synthetic
data or similar data like GANs. By analysing this kind of
virtual data, FA may get insights and inferences from different
clients who are isolated from each other. The analysed results
then be deployed to the training participants to have better
system performance. For example, in [14] proposed a learning
framework using synthetic data generated by a GAN where
the image styles are transferred from one domain into another
domain. 6G scenarios should consider the generated data to
enhance the model performance and also try to realise self-
data generation with self-model improvement for AI-network
mutual enhancement.

3) Federated analytics with incentive mechanisms: In the
6G era, increased participation of high-quality clients in fed-
erated training poses challenges in determining when and how
to engage in FL. Combining FA with incentive mechanisms
allows clients to execute more effective strategies, improving
machine learning model performance. Challenges include eval-
uating client contributions and attracting and retaining more
participants. FA can assess final learning performance, esti-
mate data quality, share information, calculate compensation,
and generate revenue. FA incentive mechanisms also apply to
scenarios like data trading and task-oriented computation [13].

C. Decentralised FA

The usage of a centralising server to aggregate FA results
can create a single point of failure and undermine the security,
resilience and scalability of network systems. Decentralised

alternatives to FL, like gossip learning (GL) and blockcain
powered FA (BFA) have been proposed to address these
limitations. Privacy-preserving techniques (e.g., differential
privacy) can be used to mitigate the privacy leakage issue as
discussed in Section III-B6 in both GL and BFA.

GL employs peer selection and communication protocols
to exchange parameters directly between participants, with-
out significant degradation of training performance or accu-
racy [15]. Different flow control mechanisms can be imple-
mented to affect how the messages travel through the network
(e.g., preventing congestion). Since the availability of gossip
protocols is decoupled from GL algorithms, decentralised
analytics architectures inspired by GL can also be developed.

In BFA, each client broadcasts its local analytics results and
aggregates the received results from other clients along with
its own results. In the case of FL, for each round of local
training, clients additionally compete with each other based
on certain consensus mechanisms [11]. The centralised FA
server is replaced by the peer-to-peer blockchain system and
the aggregation of local results is dealt with by the blockchain
system, which enhances reliability. Blockchain also provides
verification of local analytics results, strengthening privacy and
security and allowing malicious local results to be removed
before aggregation.

However, blockchain comes with remarkable overheads in
terms of increasing energy consumption, computation de-
mands, computation delay and storage which significantly
degrades 6G system performance. How to bring the compu-
tational overheads down to an acceptable level for 6G is a
challenge. This requires the selection of appropriate types of
blockchain systems (e.g., consortium blockchain) with more
efficient consensus algorithms (e.g., HotStuff - developed by
Facebook, with linear complexity of the authentication nodes).
It also requires joint optimisation by considering the computa-
tion requirements of the blockchain system and the FA system,
the elastic computation and heterogeneous communication
resources of the 6G system, and the (stringent) requirements
of 6G networks and applications.

VI. CONCLUSION

The presence of diverse data owners and edge devices adds
complexity to data privacy and confidentiality concerns in 6G
Intelligent Networks. In response, FA emerges as a promis-
ing distributed computing paradigm for collaborative value
generation from data while maintaining privacy and reducing
communication overheads. FA offers significant advantages
in managing and securing distributed and heterogeneous data
networks in 6G systems. This paper discusses FA principles
and benefits, proposes an implementation framework for 6G
networks, and identifies research challenges and open issues.
Understanding the potential of FA and addressing these chal-
lenges will shape the future of 6G networks and meet the
evolving intelligent communication requirements of our hyper-
connected society.
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