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Abstract—This study presents an empirical investigation into
the energy consumption of Machine Learning (ML) in immersive
media applications. Acknowledging the growing environmental
impact of ML, we examine various model architectures and
hyperparameters in both training and inference phases to identify
energy-efficient practices. Our study leverages software-based
power measurements for ease of replication across different
configurations, models and datasets. In this paper, we examine
multiple models and hardware configurations to identify corre-
lations across the different measurements and metrics and key
contributors to energy reduction. Our analysis offers practical
guidelines for constructing sustainable ML operations, empha-
sising energy consumption and carbon footprint reductions while
maintaining performance. As identified, short-living profiling can
quantify the long-term expected energy consumption. Moreover,
model parameters can be used to accurately estimate the expected
total energy without the need for extensive experimentation.

Index Terms—Machine Learning, Power Profiling, Energy
Consumption, Sustainable AI, Green AI

I. INTRODUCTION

In recent years, media capture and processing technologies
enabled new forms of true 3-D media content that increase
the degree of user immersion. We currently see applications
around Virtual Reality (VR) and Augmented Reality (AR)
gaming, interactive art installations, education, etc. [1]. Ma-
chine Learning (ML) plays a pivotal role in all the above
applications, acting as a Quality of Experience (QoE) pre-
dictor [2], recognising and classifying images [3], optimising
the Content Delivery Networks (CDNs) [4], and more.

As immersive media applications progressively become
the norm [5], the content creation (e.g., videos for 360o

experiences, games for VR/AR platforms, etc.) and content
delivery pipelines (e.g., ICT infrastructure - data centres, cloud
computing, CDNs, etc.) become a key contributor to global
energy consumption and the sector’s emmissions [6]. ML is
again at the forefront, providing ways for reducing the energy
consumed across the entire pipeline [7].

ML is undoubtedly one of the key factors for innovation
in the area of immersive media. However, its extensive use
across the entire pipeline makes ML a significant sustainability
concern [8]. The intensive computation required for training
and deploying Deep Learning (DL) models contributes to sub-
stantial energy consumption and, thus, carbon emissions [8].
Projections estimate that ML pipelines will produce 2% of the
global carbon emissions by 2030 [9].

In the immersive media literature, energy reductions have
become a priority [7], [10], but the power consumed by the
use of ML models is often overlooked. Driven by the above,
in this paper, we present an empirical study of the energy
consumption of a simple image classification example using
ML. With this work, we aim to offer practical guidelines and
best practices that researchers and practitioners can adopt in
their ML pipelines.

Current trends reveal an increased interest in Green and
Sustainable ML [11], [12]. Sustainable ML practices [11] en-
compass efficient use of computational resources and holistic
optimisation of ML pipelines that collected lead to reduced
energy consumption, minimised carbon footprints, and eco-
nomic benefits. As ML become increasingly integral nowa-
days, its sustainability will be crucial for its overall impact
and acceptability [12].

Our paper aims to provide insights into how ML lifecy-
cles can be optimised for lower energy consumption without
compromising performance. We analyse various model archi-
tectures and hyperparameters, both for training and inference,
to identify areas where energy consumption can be reduced.
Based on our findings, we will critically comment on the key
contributors to energy reduction and provide ways for estimat-
ing the expected energy consumption based on various model
parameters. Our work can be leveraged by ML practitioners
aiming for energy-aware optimisations in their ML pipelines.

The remainder of this paper is structured as follows: Sec. II
presents recent activities around sustainable ML and discusses
their limitations. Green ML is described in III outlining the
energy consumed within an MLOps pipeline. The method-
ology used for our extensive investigation is illustrated in
Sec. IV. Secs V and VI present our results and lessons learned,
respectively. Finally, the paper is concluded in Sec. VII

II. RELATED WORK

Many works have discussed Green and Sustainable ML.
Some notable examples are [11]–[13], where the authors
provide statistics on how ML’s energy consumption will in-
crease over time. Authors in [11] also compare transformer
models running in Google’s data centres. All papers discuss
the potential benefits of energy reduction from good practices
(e.g., early existing, knowledge transfer, etc.) but do not
systematically assess those. Our work contributes towards that
by conducting an empirical study on real-world hardware.
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Fig. 1: ML model development and deployment phase and the
associated MLOps life cycle.

Researchers have explored various energy reduction algo-
rithms, e.g., pruning [14] or quantisation [15], etc. These
works are smaller-scale investigations and focus on methods
that affect the accuracy of a given model. On the contrary, in
our large-scale study, we explore ways for energy reduction
without changes in accuracy.

A notable work presenting various measurement campaigns
is outlined in [16]. The authors focus on how various modifica-
tions in an ML pipeline can reduce the environmental impact,
targeting system-level holistic optimisations. However, the
individual measurements or the models used are not detailed.
Our work studies a set of well-known models and datasets to
enable readers to understand the differences between distinct
hyperparameters and models. Moreover, open-sourcing our
code will also enable other researchers to replicate our study
with different models, datasets or hardware.

The recent literature includes two relevant studies to our
evaluation based on real-world measurements [17], [18]. The
authors of the first study [17] focused primarily on shallow
single-layer models. The authors of the second study [18]
investigated larger transformer-based models. However, nei-
ther includes a deep exploration of how different model
characteristics or hyperparameters affect energy consumption.
This is a key contribution of our paper.

III. GREEN MLOPS: A STRATEGIC IMPERATIVE

DevOps merges software development with IT operations to
speed up development time using automation and integration
tools. MLOps, an extension of DevOps for ML pipelines,
focuses on managing ML model lifecycles efficiently, tack-
ling issues like data management and reproducibility. All
production systems supporting ML-enabled immersive me-
dia applications will usually integrate some sort of MLOps
framework [19]. Green MLOps extends the idea of MLOps,
providing a framework that streamlines ML operations in an
energy-aware and cost-effective fashion [12].

A. Energy Consumption in MLOps

MLOps (Fig. 1) usually comprises a Data Processing phase
where data are collected, curated and labelled, and weights
are applied to individual features based on their importance.
This is followed by an Experimentation phase, where prac-
titioners implement and evaluate potential algorithms, model
architectures and training techniques. Various hyperparameter
combinations are tested during this phase, most frequently in a
grid-search fashion, to achieve reasonably robust functionality.

Once one / many solutions are determined as promising,
during the Training phase, the chosen models are trained
on extensive – larger quantity and feature-rich – datasets,
“productising” them. Further hyperparameter tuning may be
deemed necessary during this phase as well. Finally, when
the model is ready, it is deployed in production, and the
Inference phase starts. The model is fed real-time data and
takes on-the-fly decisions. During this phase, the model’s
performance is continuously monitored, and re-training cycles
can be triggered when required.

Evidently [18], significant energy is consumed while train-
ing, experimenting or inferring on a model. Facebook’s AI
research team [16] discusses that the total compute cycles
for inference predictions exceed the corresponding training
cycles, having a split of 10 : 20 : 70 (in %) between Exper-
imentation, Training and Inference, respectively. Moreover,
for the end-to-end pipeline, the energy footprint is roughly
31 : 29 : 40 (in %) for the Data, Experimentation/Training,
and Inference phases. What is more, as described in [18],
a poor hyperparameter tuning strategy can increase the total
energy consumed by a typical Natural Language Model (NLP)
by ×2000 and a poorly managed neural network (NN) archi-
tecture by up to ×3000 for a transformer-based NLP.

B. A Comparison between Computation and Data Exchange

In an MLOps pipeline, energy consumption involves com-
putational resources and data exchange. Unlike typical ICT
systems like video streaming, where computation and data
transfer energy use are roughly equal [20], [21], ML pipelines
are expected to demand more energy for computation. This is
because while activities like Experimentation and Training
may occur once (e.g., no retraining of the model is required),
the Inference and Data phases will always need continuous
computation. Additionally, trends like Federated Learning
(FL), which distributes training or inference to edge nodes,
show even higher energy consumption compared to centralised
learning approaches (particularly considering complex ML
models) despite the data exchange being decreased [22]. This
is due to the difficulty of parallelising computation as training
and inference are executed across a large number of clients
on smaller datasets. Currently, no study compares the energy
consumed by the computation against the data exchange in
large-scale ML deployments (e.g., as the one presented from
Facebook in [16]), highlighting a research gap.

The above motivated our investigation, i.e., to identify dif-
ferent model characteristics and hyperparameters that impact



the energy consumed within an ML pipeline. We focus our in-
vestigation on the Experimentation, Training and Inference
phases of an MLOps pipeline. More specifically, we will com-
pare parameters such as the model size, the batch size, the time
required for training and inference, the Multiply–Accumulate
(MAC) operations, the hardware utilisation and the model
parameters as a function of the energy consumed.

IV. METHODOLOGY

To investigate the above, measuring the absolute power
at frequent intervals and the time required for each ex-
periment is essential. Hardware statistics like the utilisation
of resources and the model characteristics should also be
captured as part of our experimentation. We implemented a
framework able to capture all the above and produce the
results found in the paper. Our codebase can be found at
github.com/ioannismavromatis/sustainable-ai.

A. Gathering Software-Based Energy Consumption Data

Monitoring energy consumption in computing environments
can be achieved through hardware or software tools. Hardware
methods offer precision [23] but face challenges in synchro-
nisation and control [24], particularly for brief measurements
like testing a shallow NN. These methods often require exter-
nal clocks and costly equipment, limiting accessibility for all
ML practitioners. Our investigation employs a software-based
approach to measure energy consumption to overcome these
issues. This choice not only reduces cost and complexity but
also enhances consistency and scalability. Moreover, it allows
for parallel evaluations of multiple devices and facilitates
testing in complex scenarios, such as FL deployments.

In software-based measurements, power consumption is
typically assessed in two ways. The first method estimates
power based on a hardware component’s Thermal Design
Power (TDP) and its utilisation (in a linear relationship).
TDP, measured in Watts (W), indicates the maximum power
consumption under theoretical full load. However, this method
oversimplifies the relationship between power consumption
and utilisation [25], as modern hardware can dynamically
adjust the frequency and deactivate entire cores to save energy.
A more nuanced approach is based on the hardware’s capaci-
tance C, voltage V , and frequency f , as P = 1/2 CV 2f , but
obtaining these values for all components is rather challenging.

As a workaround, manufacturers offer a solution by pro-
viding access to energy data through Model Specific Regis-
ters (MSRs), like Nvidia’s Management Library (NVML) for
GPUs and Intel’s Running Average Power Limit (RAPL) for
CPU and DRAM usage. These methods are reliable with a
reported variance of about ±5W in absolute values while
following consistent trends in relative measurements [26],
[27]. For consumer CPUs that MSRs do not provide DRAM
measurements, DRAM’s energy consumption is approximated
using PDRAM =

∑
NDIMM × PDIMM, where NDIMM is the

number of DIMMs and PDIMM = 1/2 CV 2f . The operational
V and f are accessible from the OS, and C is fixed for all our
experiments. This equation is a good approximation as voltage

variations during DRAM operations are almost negligible, and
operational frequency does not change over time [28].

B. Calculating Energy Usage in Machine Learning Processes

As discussed, our investigation will focus on the Exper-
imentation, Training and Inference phases. Training and
Experimentation phases are very similar (a model is trained
using a set of preconfigured hyperparameters) and thus can be
approached in a similar way in our investigation. To measure
the energy consumption we define two metrics, i.e., Etr, which
is the total energy consumed during one training session (i.e.,
for a given model and dataset, with a pre-defined set of
hyperparameters and a fixed number of epochs), and Ein,
which is the total energy during inference (i.e., for a given
model and dataset, inferring across all samples with a given
batch size). They are as follows:

Etr =

∫ Ttr

t=0

Ptr(t) dt−
∫ Tm

t=0

Pidle(t) dt (1)

Ein =

∫ Tin

t=0

Pin(t) dt−
∫ Tm

t=0

Pidle(t) dt (2)

where Ttr and Tin are the training and inference times, Tm

is a hardcoded time interval used for the idle experiment, and
Ptr, Pin and Pidle are the power measurements during training,
testing and when the system is idle. Our framework captures
the power consumption at frequent intervals ∆t. Denoting ti
as the i-th time interval, the power P (ti) (this could be either
for training or inference) is:

P (ti) = PCPU(ti) + PGPU(ti) + PDRAM(ti) (3)

where PCPU, PGPU and PDRAM are the power consumption,
taken in real-time for the CPU, GPU and DRAM, respectively.
The energy within i-th interval can be calculated as the
E(ti) = P (ti)∆t. Based on that, the Eqs. (1) and (2) can
be approximated with the cumulative sum of all intervals, i.e.:

Etr =

Ntr∑
i=0

Ptr(ti)∆t−
Nm∑
t=0

Pidle(ti)∆t (4)

Ein =

Nin∑
t=0

Pin(ti)∆t−
Nm∑
t=0

Pidle(ti)∆t (5)

where Ntr and Nin are the total number of intervals during
training or inference, respectively. As discussed, data exchange
and processing, even though they play a significant role in the
energy consumed, will not be considered at this stage.

C. Hardware Stats and Model Characteristics

Our framework also collects utilisation statistics for all
resources and the model characteristics. The NVML library
provides the GPU (and its VRAM) utilisation. For the CPU,
the utilisation metrics were directly collected from the OS as a
function of each CPU core. The CPU utilisation is calculated
as the average utilisation at a given time between all cores.
Similarly, DRAM’s utilisation was also provided by the OS.



Concerning the model features, several key characteristics
emerge as critical indicators when considering the operational
efficiency of the model. These include the model size, the num-
ber of total and trainable parameters, buffer size, and MACs.
The model size, measured when the model is decompressed
and loaded in the VRAM, includes both the parameters and
buffers and represents the overall footprint of the model in
memory. The model size is measured in bytes (B).

The total number and the trainable parameters are key
indicators of a model’s complexity. These parameters are
different when layers in the model are frozen (i.e., are not
updated). A larger number of parameters typically implies a
more complex model, which can potentially achieve higher
accuracy but at the cost of increased computational resources
and memory usage. This complexity can lead to longer training
times and may require more powerful hardware.

The buffer size indicates the additional data structures
often used for storing intermediate outputs and constants that
do not change during training, such as batch normalisation
parameters. While they do not directly contribute to the learn-
ing capacity of the model, they impact the overall memory
footprint. A large buffer size can lead to inefficiencies in
systems with limited memory.

Finally, the MAC is the fundamental operation in NNs, espe-
cially in convolutional layers. The number of MACs provides
an estimate of the computational complexity of the model.
Higher MACs generally indicate increased computation for
both training and inference, leading to longer processing times
and increased energy consumption. All the above-mentioned
model characteristics are calculated when the model is loaded
in the GPU before the execution of each experiment. For our
investigation, either independently or as a combination, these
parameters will be explored towards total energy consumption.

V. RESULTS

For our investigation, we consider a simple image classi-
fication task. This task was chosen due to the ample mod-
els and datasets available in the literature. We conducted a
thorough investigation to observe the behaviours of different
ML models. In brackets, we present the model variant chosen
for our experimentation. We picked: SimpleDLA, DPN (26),
DenseNet (121), EfficientNet (B0), GoogLeNet, LeNet, Mo-
bileNet, MobileNetV2, PNASNet, PreActResNet (18), RegNet
(X 200MF), ResNet (18), ResNeXt (29 2x64d), SENet (18),
ShuffleNetV2, and VGG (16), to capture a diverse range
of architectures and sizes. All experiments were conducted
with the same hyperparameters (batch size of 128, learning
rate 0.001, SGD optimiser, categorical cross-entropy loss and
weight decay 5 × 10−4). We also fixed the seed to ensure
consistency across different runs.

We used three different Hardware Configurations (HCs)
summarised in Tab. I. These three HCs provide diverse play-
grounds to explore and identify their differences or similarities.
As the space in the paper is limited, we will present a subset
of the results and discuss the rest in the text. All results can
be found in our GitHub repository for further analysis.

TABLE I: Hardware Configurations (HCs). In brackets is the
TDP for each hardware component.

HC-1 HC-2 HC-3

CPU∗ i7-8700K (95W) i9-11900KF (125W) i5-12500 (65W)

DRAM 4x16GB DDR4 4x32GB DDR4 2x16GB DDR5
3600MHz 3200MHz 3200MHz

GPU1 RTX 3080 (320W) RTX 3090 (350W) RTX A2000 (70W)
10GB 24GB 12GB

∗Intel Core, 1Nvidia driver v530.30.02, CUDA v12.1

0

25

50

75

100

125

D
ur

at
io

n 
(s

)

5.1s
13.7s

27.4s

50.7s

31.0s
21.0s

30.6s

133.2s

117.0s

98.0s

40.5s
35.5s

71.0s

115.0s

3.2s 5.0s
9.5s

15.0s
9.1s 6.5s 8.9s

43.0s
37.2s

30.8s

12.2s 10.3s 13.6s

27.1s

Type
Training
Testing

(a) Duration for HC-3.

Le
Net

Mob
ile

Net

Effic
ien

tN
et

Sim
ple

DLA

Res
Net

VGG

PreA
ctR

es
Net

Goo
gL

eN
et

Den
se

Net

Res
NeX

t

Mob
ile

NetV
2

SENet

Reg
Net

DPN

Models

0

10

20

30

40

D
ur

at
io

n 
(s

)

7.7s 8.0s
10.2s

20.1s

12.2s
8.7s

12.0s

46.6s

40.7s

35.2s

13.4s 14.2s

28.8s

40.8s

5.1s 5.3s 5.3s 6.1s 5.3s 5.3s 5.3s

14.1s
12.2s 11.2s

5.3s 5.3s 6.1s
9.5s

Type
Training
Testing

(b) Duration for HC-2.
Fig. 2: Training and inference duration (for 50k samples).

Our investigation was based on the CIFAR-10 dataset [29].
The dataset consists of 60000 32 × 32 colour images in 10
classes, with 6000 images per class. The split between the
training and testing set is 50000 : 10000. For our evaluation,
we replicated the testing set 5 times (i.e., to 50k samples), so
there are consistent samples between training and testing.

A. Initial Statistics

Starting with the maximum accuracy achieved, most models
achieved around 87%− 91% after 100 epochs. The shallower
LeNet underperformed as expected, reaching only around
68%, whereas MobileNet and EfficientNet reached 81% and
83%, respectively. Comparing the time required for training
and inference (one epoch of training and 50k samples of
inference), we see the results in Fig. 2. For most models,
training takes three times longer than inference due to back-
propagation and parameter updating. However, as seen, models
like DPN, RegNet, etc. do not adhere to this rule of thumb.
As shown, there is no direct correlation between the training
and inference across different models, so each model should
be independently investigated.

Comparing now HC-3 (Fig. 2a) with HC-2 (Fig. 2b), there
is no observable difference during the training phase in terms
of time required (relatively – between models). However,
for the inference, we observe that a more powerful GPU
(HC-2) parses the dataset in roughly equal time across most
models. With the inference dictating the energy consumption
(as discussed in Sec. III-A), as a rule of thumb, models
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Fig. 3: Average power usage with HC-2.

achieving similar accuracy but inferring quicker can introduce
significant energy benefits in the long term, even if they require
more time to train.

B. Power Consumption Measurements

Fig. 3 shows the average power consumed for HC-2. A
comparison between the training and inference phases is also
shown. All the larger models force the GPU to operate close
to its TDP (Fig. 3a). As expected, CPU and DRAM, being
underutilised, show roughly equal and not significantly high
average power consumption across all models. However, this
is not the case for the inference (Fig. 3b). As shown, many
models operate ≥ 30% lower than the GPU’s TDP (e.g.,
VGG), with the CPU and DRAM showing similar results with
the training. This is the case for the other two HCs, with the
difference being more prominent for HC-1 and less prominent
for HC-3.

Given that CPU and DRAM do not change drastically across
different models, moving on, in Fig. 4, we present an example
of the power consumption as a function of the utilisation
and the usage of the GPU’s VRAM. For training, a larger
GPU VRAM reflects, most of the time, higher utilisation and
increased power consumption. This is even more prominent
during inference. Moreover, the results indicate a high cor-
relation between utilisation and power consumption, but up
to a certain point. Beyond a power draw of ˜300W, any
further increase did not translate to a dramatic increase in the
GPU utilisation. At this point, utilisation was almost 100%, so
performance was pretty much at its maximum. This is more
clear in Fig. 4a, where, as said earlier, most models push the
GPU to operate close to its TDP.

We observe a linear relationship by investigating the time
and energy consumption (e.g., per epoch for training or per
X number of samples for inference). Our results for that
can be found in our repository. However, we observe the
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Fig. 4: Utilisation and power consumption (considering the
GPU RAM usage) - HC-1.
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Fig. 5: Loss, energy and accuracy per epoch - HC-3.

following by comparing the model loss, accuracy, and total
energy accumulated as the number of epochs increases while
we train a model (Fig. 5). This figure shows the average across
all models and the range of values for a given epoch. As
observed, even though there is no correlation between accuracy
and total energy consumed, as the number of epochs increases,
the energy benefits that can be observed when replacing a
model can significantly outnumber the change in accuracy.

Comparing the MACs of each model as a function of the
total energy, we see a high correlation between them (results
in our repository). An even higher correlation is shown if
considering a new metric: the number of MACs per model
parameter (Fig. 6). For both training (Fig. 6a) and inference
(Fig. 6b), we see a strong correlation across them.

Finally, we compare the batch size for training and inference
(Fig. 7). As expected, smaller batch sizes increase the power
consumption. There is a direct correlation with the GPU
utilisation for each model. For all setups, there is a batch
size that minimises the power consumption, with no further
improvements shown if the batch size is increased.

VI. DISCUSSION

The previous section presented a subset of our results
from our extensive investigation across several models and
hardware setups. This section will summarise our findings
and critically comment on them. Starting with our initial
observations (Sec. V-A), it is clear that each model’s unique
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Fig. 6: Total energy consumption as a function of the MACs
per parameter - HC-3.
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architecture does not allow room for cross-model observations
(i.e., if a model’s energy consumption is low, there is no
obvious way to say that another model will have an equally
low energy consumption). Further investigation of the specific
architectures and model layers and how they affect energy
consumption could identify more similarities. However, it was
outside this work’s scope and can be considered in the future.

Broadly speaking (Fig. 5), benefits in energy reduction can
outperform the gains in accuracy on many occasions. More-
over, training and inference durations are not correlated; thus,
cross-phase or cross-hardware estimations are not promising.
Even though a rule of thumb could say that training will
require three times more time for the same number of samples,
this is not always the case.

Considering that time and total energy are linear, short-
living profilers (e.g., training for one epoch or inferring for
a small number of samples) can be used to extrapolate the
total energy for larger scenarios. In addition, for accuracy and
duration, it was evident that models achieving comparable
accuracy but “running faster” can introduce huge energy
benefits in the long term. From what was shown in Fig. 3
and taking into account Facebook’s energy split presented in
Sec. III-A, a less power-hungry model during inference should
be prioritised for a pipeline over a less energy-intensive model
during training. This observation can be combined with the
total energy and time to get even more accurate estimations
for both training and inference across different models.

As shown in Fig. 4, hardware devices’ power profiles are

not exactly linear. Usually, manufacturers push their devices
to the limit to squeeze a narrow increase in performance.
Smart strategies like the one introduced in [30] (power capping
optimisations) can exploit that and significantly reduce the
total energy consumed. Finally, if an estimation of the model’s
expected energy is required, contrary to the literature that
proposes using the model’s MACs (with Spearman correlation
of 0.8 – HC-3), we identified the MACs per model parameter
as a more suitable candidate (with Spearman correlation of 0.9
– HC-3). Similar correlations are observed across all setups,
proving that as a uniform solution for estimating the expected
energy consumption with high accuracy.

VII. CONCLUSIONS

This work presented an extensive analysis across multi-
ple ML models and hardware setups to uncover techniques
for improving sustainability without sacrificing effective-
ness. The investigation methodology combined software-based
power measurements with tracking of hardware utilisation and
model characteristics. The experiments demonstrated that for
many models, reductions in energy consumption can outpace
marginal accuracy improvements, highlighting the need to
balance performance and efficiency. Additionally, assumptions
about energy use cannot be reliably made across training and
inference or across hardware due to a lack of consistent cor-
relations. However, normalising model MACs by the number
of parameters provides an excellent indicator of energy con-
sumption in most cases. The insights from this study can guide
decisions when constructing ML pipelines, whether choosing
architectures and hyperparameters or provisioning hardware
resources. There remains ample opportunity for future work
to further improve sustainability through novel architectures
optimised for efficiency and adoption of best practices around
selective retraining, power capping, and inference-focused
model selection. Overall, the evidence clearly shows that with
careful planning, ML can continue advancing while aligning
with environmental responsibility.
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