
Asynchronous Federated Learning via Over-the-air
Computation

Zijian Zheng∗, Yansha Deng†, Xiaonan Liu∗, Arumugam Nallanathan∗
∗ School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK

† Department of Engineering, King’s College London, London, UK
E-mail: z.zheng@qmul.ac.uk, yansha.deng@kcl.ac.uk, x.l.liu@qmul.ac.uk, a.nallanathan@qmul.ac.uk

Abstract—The emerging field of federated learning (FL) pro-
vides great potential for edge intelligence while protecting data
privacy. However, as the system grows in scale or becomes more
heterogeneous, new challenges, such as the spectrum shortage and
stragglers issues, arise. These issues can potentially be addressed
by over-the-air computation (AirComp) and asynchronous FL,
respectively, however, their combination is difficult due to their
conflicting requirements. In this paper, we propose a novel
asynchronous FL with AirComp in a time-triggered manner
(async-AirFed). The conventional async aggregation requests the
historical data to be used for model updates, which can cause the
accumulation of channel noise and interference when AirComp is
applied. To address this issue, we propose a simple but effective
truncation method which retains a limited length of historical
data. Convergence analysis presents that our proposed async-
AirFed converges on non-convex optimality function with sub-
linear rate. Simulation results show that our proposed scheme
achieves more than 34% faster convergence than the benchmarks,
by achieving an accuracy of 85%, which also improves the time
utilization efficiency and reduces the impact of staleness and the
channel.

Index Terms—Asynchronous federated learning, over-the-air
computation, error accumulation.

I. INTRODUCTION

Unlike traditional communication systems, the new gener-
ation of wireless communication systems, including 5G and
6G, have introduced edge intelligence as essential compo-
nents of the system, which are able to support a variety of
applications such as virtual reality (VR), augmented reality
(AR), connected vehicles, and smart internet-of-things (IoT).
Meanwhile, federated learning (FL) [1] provides an effective
implementation for edge intelligence in protecting user pri-
vacy.

According to the communication methods in model training,
FL can be classified into digital approach [2], and over-
the-air computation (AirComp) approach [3]. The digital ap-
proach provides a higher accuracy by employing error-free
communication while facing problems when there are too
many participants or scarce spectrum resource. The AirComp
approach significantly improves spectral efficiency by sharing

This work was supported in part by UKRI under the UK government’s
Horizon Europe funding guarantee (grant number 10061781), as part of
the European Commission-funded collaborative project VERGE, under SNS
JU program (grant number 101096034). This work is also a contribution
by Project REASON, a UK Government funded project under the FONRC
sponsored by the DSIT.

the multiple-access channel (MAC) while suffering accuracy
loss from the channel noise and interference.

According to the concurrency of participants, FL can be
divided into synchronous approach and asynchronous ap-
proach [4]. In the sync-FL approach, all selected devices
must update their local models concurrently. Since the fast
devices have to wait for the slowest one, the overall speed
is constrained, thereby resulting in stragglers problem. The
async-FL approach offers a solution by enabling aggregation
from a subset of participants. However, it may lead to a
decrease in model accuracy due to outdated updates. Also,
much more communication rounds are required compared to
the synchronous setting, bringing heavier burden on wireless
transmission. In conclusion, the sync-FL can use the latest data
for each update but has lower time utilization efficiency; the
async-FL needs to solve the problem of outdated updates but
can significantly improve time utilization efficiency.

The time-triggered FL (TT-Fed) [5] provides a generalized
form between synchronous and total asynchronous settings,
allowing to find a tradeoff between training and communica-
tion efficiencies. It triggers aggregation based on time rather
than events, which reduces the number of communication
rounds required for model training. However, like other digital
transmission based FL systems, the communication bottleneck
will limit the scale of TT-Fed. To achieve digital transmission,
the system must allocate dedicated bandwidth for each user.
When the total bandwidth is limited but the number of clients
is too large, clients may suffer from longer communication
latency, resulting in a decrease in learning efficiency. Also,
the uncertainty on the latency of digital communication also
makes the resource allocation and the optimization on time
slot duration complex and inefficient.

To ensure the scalability of FL system, the combination of
asynchronous aggregation and AirComp can be a potential so-
lution to solve both stragglers problem and spectrum shortage
simultaneously. However, the characteristics of MAC require
a simultaneous transmission among all participants, making
it inherently incompatible with async-FL. To the best of our
knowledge, no prior research has been conducted to introduce
AirComp to async-FL. Based on TT-Fed, we find that its time-
aligned property makes AirComp feasible in asynchronous
aggregation, which further improves communication efficiency
and enhances the scalability of FL.

In this paper, we propose an over-the-air federated learning



architecture in an asynchronous manner (async-AirFed). To the
best of our knowledge, this is the first paper consider AirComp
in async-FL setting. First, we analyze how the staleness,
channel noise and interference introduced into the model
change over time. We conclude that gradient aggregation is
better than model aggregation for async-AirFed and propose a
simple truncation method to stop the the error accumulation.
We further study the convergence rate of async-AirFed under
non-convex assumption. Finally, we evaluate the convergence
speed of async-AirFed compared to three stage-of-the-art
benchmarks.

II. SYSTEM MODEL

We consider a federated learning system, where clients
u1, u2, · · · from set Stot train a global model collaboratively
with the help of a parameter server. Each client u keeps
its own training data denoted by (xi, yi) ∈ Du with Du

samples. The whole available dataset for the FL system is the
combination of all clients’ datasets with Dtot samples, denoted
by Dtot = D1 ∪ · · · ∪DStot

. Unlike the conventional machine
learning scenarios, raw training data is kept on clients and not
allowed to be transmitted in FL.

The goal of an FL system is to optimize the global model
on its trainable parameters to achieve the minimum empirical
risk:

min
w

F (w) =
∑

u∈Stot

∑
(xi,yi)∈Du

1

Dtot
f(w;xi, yi), (1)

where f(·) is the sample-wise risk function, evaluating the
model quality characterized by parameter w when tested with
input xi and the correct answer yi. Stochastic gradient descent
(SGD) is used to solve this optimization problem.

A. Time-Triggered Async Over-the-Air Federated Learning

Our research builds upon and extends the work of X. Zhou
[5], who proposed a generalized approach between sync-FL
and full async-FL, namely, TT-Fed. Before explaining the
time-triggered scheme in detail, we present several definitions
for clarification according to [5].

Definition 1 (Time Slot) We use “time slot” to indicate the
iterations during model training, indexed by the superscript
.(k) in our notation. We choose the name “time slot” instead
of “iteration” or “round” to emphasize its correspondence with
wall-clock time. The change of index k is driven solely by time
rather than the updates of FL model in conventional event-
triggered settings, given by

k =

⌈
t

∆T

⌉
, (2)

where ∆T is a hyper-parameter called time slot duration.

Definition 2 (Available Client) Due to differences in comput-
ing capacity and dataset size among clients, their latency for
computations may vary dramatically, resulting in the existence
of both busy clients and idle ones with their computation
accomplished. We define the idle clients at the end of time

Client 1

Client 2

Client 3

Client 4

Tier 1

Tier 2

Tier 3

Global Broadcast Local Computation AirComp Aggregation

Parameter 

Server

Fig. 1. The work-flow of async-AirFed.

slot k as the available clients. They are timely enough to
participate in the upcoming global aggregation. The indicator
1
(k)
L,u ∈ {1, 0} is used to label this state, where u is an available

client in the time slot k when the indicator is 1.

Definition 3 (Tier) We denote tier as a subset of clients with
similar computation and communication latency. Formally, Sm

includes the clients who need m time slots for model update,
i.e.,

Sm =
{
u
∣∣∣ 1(τ)

L,u = 1; τ = m, 2m, · · ·
}
, m = 1, 2, · · · ,M.

(3)
To indicate the states of a tier, we integrate the client-wise
indicators into tier-wise:

1
(k)
I,m =

∏
u∈Sm

1
(k)
L,u. (4)

The working principle of TT-Fed is described below. By
dividing the entire training process into numerous time slots,
a trigger mechanism of aggregation that solely depends on
time is established. For client u, its decision to participate
in the k-th aggregation depends on whether it can complete
the computation and communication before the end of the
k-th time slot. The clients are naturally classified into tiers
according to their participant pattern determined by the relative
numeral of there latency and the system time slot duration.
The clients within a tier adopt the sync aggregation, making
the AirComp possible to improve communication efficiency.
The aggregation between different tiers keeps asynchronous,
reducing the waste on time to wait for stragglers.

Our async-AirFed retains most of the characteristics of TT-
Fed, except for modifying the alignment of communication
session. In TT-Fed, the clients transmit their update data imme-
diately once the computation is completed. To enable AirComp
in async-AirFed, the end time of the communication session
needs to be aligned with the end time of the time slot, to
ensure that all available clients will send data simultaneously.
The working flow of async-AirFed is shown in Fig. 1. Each
time slot has three sessions:

1) Global Broadcast: At the beginning of each time slot,
the parameter server broadcasts the latest global model to the



whole system. For those clients who have completed the aggre-
gation in the last time slot, the newly received global model is
used for gradient computation in the consequent work sessions.
For the other clients who are still busy with computation, this
broadcast will be ignored to achieve parallelism.

2) Local Computation: The gradient in a typical FL train-
ing scenario is estimated by applying the global model to
local data. Due to async updates, gradients from different tiers
correspond to global models at different time slots. According
to the definition of tier number and global broadcast session,
the timeliness of each uploaded gradient by each client can be
traced back. That is, for the available client u in the time slot
k, its computed gradient is based on the global model at the
time slot k −m, where m is the tier number of client the u,
i.e:

x
(k)
L,u = g

(k−m)
L,u

=
∑

(xi,yi)∈Du

1

Du
∇f

(
w

(k−m)
G ;xi, yi

)
.

(5)

3) Over-the-Air Aggregation: The global aggregation es-
sentially occurs simultaneously, allowing AirComp leveraged
to improve communication efficiency. For simplicity, we split
it into two virtual sub-processes: intra-tier aggregation and
extra-tier aggregation. The extra-tier aggregation refers to the
aggregation of different tiers, while the intra-tier aggregation
refers to the aggregation of different clients within the same
tier. These two types of aggregation processes are defined
by two sets of affine coefficients, which are required to
be multiplied with the uploaded gradient before over-the-air
computation.

Pre-distortion is employed to mitigate channel interference.
It generally comprises two parts at the transmitter (client)
and receiver (parameter server). To maintain generality, we
represent both of these parts as linear mappings, namely,
matrices B(k)

L,u and A(k). The matrix B
(k)
L,u varies across clients,

which is used to eliminate the heterogeneous across channels,
thereby aligning the amplitude of transmitted signals at the
receiver. The matrix A(k) keeps the same for all clients and
is used to amplify the received signal, ensuring the transmit
power at the transmitter side satisfies the power constraint.

Based on the above definitions, the process of over-the-air
aggregation is expressed as

g
(k)
A = A(k)

M∑
m=1

α(k)
m 1

(k)
I,m

∑
u∈Sm

β(k)
u H

(k)
L,uB

(k)
L,ug

(k−m)
L,u

+A(k)n(k),

(6)

where H
(k)
L,u is the uplink channel matrix between the parame-

ter server and client u and n(k) is the additive white Gaussian
noise (AWGN).

According to the object of FL defined in (1), we choose the
normalized dataset size as the intra-tier aggregation weight,
which is denoted as

β(k)
u =

Du∑
v∈Sm

Dv
. (7)

The extra-tier aggregation weight is generated using the
same heuristic weighting scheme in [5] and [6]. The extra-
tier weight in this scheme is the normalized update frequency
across different tiers, which is written as

α(k)
m =

⌊
k

M+1−m

⌋
∑M

m=1

⌊
k
m

⌋ . (8)

Based on the aggregation process, we further define the
formula for model updates as

w
(k)
G = w

(k−1)
G − η(k)u(k), (9)

where η(k) is the learning rate and ξ(k) is given by

ξ(k) =

M∑
m=1

α(k)
m 1

(k)
I,m, (10)

and u(k) is the vector indicating the update as

u(k) = g
(k)
A +

(
1− ξ(k)

)
u(k−1). (11)

B. Latency and Energy Model

In this section, we formulate the time and power cost model,
including the computation and communication latency, as well
as the transmission power constraint.

1) Computation Latency: We adopt floating point operations
(FLOPs) as a measure of computational task require-
ments. Denote the floating point operations per second
(FLOPS) of CPU as fc. Let C denote the FLOPs required
by the federated learning model, and Du denote the size
of dataset on the client u. Thus, the computational latency
of the client u is given by

τ cpu =
CDu

fc
. (12)

2) Communication Latency: In order to ensure compatibility
between AirComp and existing communication systems,
we adopt the orthogonal frequency division multiplexing
(OFDM) modulation with total bandwidth B and NM

orthogonal sub-carriers. To simplify our expression, we
ignore the time cost of cyclic prefix (CP). Thus, the
duration of each OFDM symbol is given by the reciprocal
of sub-channel bandwidth, which is denoted as NM/B.
To transmit model parameters or gradients with a total
length of q, ⌈q/NM⌉ OFDM symbols are required. Con-
sequently, the communication latency for each AirComp
transmission is given by

τ cm =

⌈
q

NM

⌉
· NM

B
. (13)

3) Communication Power: To simplify the analysis, we
use the square of the L2-norm to represent the energy
required for data transmission through AirComp. The
power required to implement pre-distortion and transmit
x
(k)
L,u on the client u at the time slot k is given by

P (k)
u =

∥∥∥B(k)
L,ux

(k)
L,u

∥∥∥2
2

τ cm
. (14)



The communication power of the whole system is subject
to the average power constraint among all clients, which
is written as ∑

u∈Stot

1

Stot
P (k)
u ≤ P0. (15)

III. ANALYSIS ON NOISE, INTERFERENCE AND STALENESS

Although async aggregation and AirComp bring improve-
ments to parallelism and spectral efficiency for FL, their brute-
force combination will lead to new issues. First, due to the
unique estimation mechanism in async-FL, the channel noise
and interference introduced by AirComp may accumulate
over time. In addition, the time-triggered mechanism required
by AirComp makes it more difficult to analyze staleness.
Currently, most research on combating staleness is based on
event-triggered designs, which may be ineffective for this
problem.

A. Model Aggregation vs. Gradient Aggregation

There are two variations of aggregation method in FL:
model aggregation and gradient aggregation. Both exist in
either AirComp or async-FL.In the fundamental FL, such as
the FedAvg [1], the choice between them does not affect the
convergence performance. However, we find they are different
when channel noise and interference, or staleness exist. To
compare their differences, we expand (9) and rewrite the
corresponding global model update formula for the model
aggregation as

w
(k)
G,grad = w

(k−1)
G

− η(k)
M∑

m=1

α(k)
m 1

(k)
I,m

∑
u∈Sm

β(k)
u H̃

(k)
L,ug

(k−m)
L,u

− η(k)
(
1− ξ(k)

)
u(k−1)

− η(k)A(k)n(k),

(16)

w
(k)
G,mod =

M∑
m=1

α(k)
m 1

(k)
I,m

∑
u∈Sm

β(k)
u H̃

(k)
L,uw

(k−m)
G

+
(
1− ξ(k)

)
w

(k−1)
G

− η(k)
M∑

m=1

α(k)
m 1

(k)
I,m

∑
u∈Sm

β(k)
u,mH̃

(k)
L,ug

(k−m)
L,u

+A(k)n(k),
(17)

where H̃
(k)
L,u = A(k)H

(k)
L,uB

(k)
L,u represents the residual equiva-

lent channel after pre-distortion.
According to (16) and (17) , the model parameters in

each time slot consist of three parts: the starting point (the
component including model parameters), the update vector
(the component including gradient), and the noise term (the
component including AWGN). By comparing each of them,
we have the following insights:

• The gradient aggregation has less staleness and in-
terference on starting point. As shown in the first row

of (16), the starting point of gradient aggregation in k-
th time slot is the global parameter from the (k − 1)-th
time slot, while the starting point of model aggregation
is a complex combination from (k −M)-th to (k − 1)-
th time slot, illustrated in the first and second row in
(17). It’s obvious that the complex combination in model
aggregation includes both outdated data from previous
time slots (staleness) and residual channel effects which
cannot be eliminated by imperfect pre-distortion (channel
interference). Due to the natural property of AirComp
and async aggregation, the staleness and the channel
interference are inevitable, while the gradient aggregation
could reduce their impact by preventing parameters from
being contaminated again.

• The gradient aggregation is more robust under noise.
For most cases, the learning rate η(k) is much smaller
than 1, making the noise term in the gradient greatly
shrunk. Considering that AirComp uses uncoded analog
transmission, this advantage is particularly important for
model accuracy in long-distance or strict power-limited
scenarios.

B. Truncation Mechanism

To maximize data diversity, the asynchronous aggregation
needs to use previous data to replace absent data from un-
available tiers. As shown in (11), u(k−1) is combined with
the updated gradient g

(k)
A to derive the update vector u(k).

This approach works well when the transmission is error-free,
while it has error accumulation problem when channel noise
and interference appear.

We solve (11) based on the first-order variable coefficient
difference equation and end up with the following:

u(k) = p(k) +

k−1∑
l=1

k−l+1∏
τ=k

(
1− ξ(τ)

)
p(k−l)

+ e(k) +

k−1∑
l=1

k−l+1∏
τ=k

(
1− ξ(τ)

)
e(k−l)

+

k∏
τ=1

(
1− ξ(k)

)
u(0),

(18)

where p(k) =
∑M

m=1 α
(k)
m 1

(k)
I,m

∑
u∈Sm

β
(k)
u g

(k−m)
L,u represents

the aggregated gradient from available tiers and e(k) =

A(k)n(k)+
∑M

m=1 α
(k)
m 1

(k)
I,m

∑
u∈Sm

β
(k)
u

(
H̃

(k)
L,u − I

)
g
(k−m)
L,u

represents the channel noise and interference caused by im-
perfect pre-distortion.

The second row shows how errors from channel accumu-
lated over time. To eliminate this influence, we introduce a
truncation mechanism. The core idea of truncation comes from
a simple fact: the reason why we need previous information
is to include the gradient from unavailable tiers in each model
update. Given that the slowest tier in async-AirFed requires M
time slots, we only need to retain at most M th-order memory
when u(k) iterates. Besides, for scenarios with poor channels,



the trade-off between data diversity and communication ro-
bustness may need to prioritize the communication. To address
this, we set the memory length of u(k) as a hyper-parameter,
called “truncation order”, and denoted as nt.

The modified update vector u
(k)
t requires an additional

truncation operation. In this mechanism, an nt length buffer
is required to store the received data gA and the applied
weight

(
1− ξ(τ)

)
from (k − 1)-th to (k − nt − 1)-th time

slot. To truncate the accumulated error, the historical received
data beyond the given truncation order will be removed after
applying its corresponding weight, which is given by

u
(k)
t = g

(k)
A +

(
1− ξ(k)

)
u
(k−1)
t −

k−nt∏
τ=k

(
1− ξ(τ)

)
g
(k−nt−1)
A .

(19)

Theorem 1 (Truncated Update with nt Orders) Under the
truncated update vector formula in (19), nt ≥ 1, and u

(τ)
t =

0, ∀τ = −nt + 1, · · · ,−1, 0, the non-recursive expression
is given by

u
(k)
t = g

(k)
A +

nt∑
l=1

k−l+1∏
τ=k

(
1− ξ(τ)

)
g
(k−l)
A . (20)

Proof. The proof is simple with Mathematical Induction.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence behaviour of
the proposed async-AirFed. We first introduce the following
assumptions:

Assumption 1 (L-Smoothness) We assume the global risk
function is differentiable and its gradient is Lipschitz contin-
uing with a positive constant L, i.e., ∀w1,w2 ∈ Rn where n
is the dimension of the model parameter, ∃L ≥ 0, it satisfies

∥∇FG (w1)−∇FG (w2)∥2 ≤ L ∥w1 −w2∥2 . (21)

Assumption 2 (Bounded Gradient Dissimilarity) We adopted
a non-negative constant ζ to indicate the Euclidean distance
at the k-th time slot between the global gradient and the local
gradient on the client u, i.e.,∥∥∥g(k)

L,u − g
(k)
G

∥∥∥
2
≤ ζ. (22)

Assumption 3 (Bounded Gradient Aggregation) At each time
slot, the received gradient via async-AirFed aggregation has
a limited norm and is linearly bounded by the ideal global
gradient, i.e, ∥∥∥g(k)

A

∥∥∥
2
≤ χ

∥∥∥g(k)
G

∥∥∥
2
. (23)

Assumption 4 (Bounded Global Gradient Staleness) For each
time slot, the norm of the delayed gradient within the max-
staleness steps is linearly bounded by the norm of the latest
gradient, which is denoted as∥∥∥g(k−m)

G

∥∥∥
2
≤ β

∥∥∥g(k−1)
G

∥∥∥
2
, ∀m ∈ Z ∩ [1,M ]. (24)

Theorem 2 (Constant Learning Rate) Under Assumption 1-4,
the norm of model gradient in async-AirFed are bounded by

min
k∈{1,··· ,K}

∥∥∥g(k)
G

∥∥∥2 ≤ 2r0
ηK

+ Lη · navg + 3ζ + 3eavg, (25)

where r0 = FG

(
w

(0)
G

)
− FG (w∗

G), navg denotes the time-
averaged noise after the pre-distortion at receiver side, eavg
denotes the averaged transmission mean square error (MSE)
caused by imperfect pre-distortion and η is the constant
learning rate set by

η ≤
√

1 + 2βP(M)− 1

LβP(M)
, (26)

where P(M) is a polynomial of tier number M .

Several insights can be obtained from Theorem 2 on how
the model would converge with async-AirFed. By choosing
small enough learning rate, which is given by (26), the mag-
nitude of gradient is ensured to diminish as training iterations
increase. But the descent of the model gradient will encounter
a floor caused by the noise and interference in the channel, as
well as the non-IID data among clients. The impact of channel
noise is mitigated by the learning rate less than 1, as the
aforementioned comparison between model aggregation and
gradient aggregation.

V. NUMERICAL RESULTS

We consider a wireless network with 200 clients and a
parameter server. The clients are uniformly distributed inside
a circle of radius Rmax = 400m. The channel coefficients
consist of path loss with α = 3.76 [5] and small-scale fading
that follows Rayleigh distribution with σ = 1. The total
bandwidth is B = 10MHz, and the noise power spectrum
density is N0 = −174dBm/Hz. The average power constraint
is P0 = 20dBm.

We build a multilayer perceptron (MLP) with 128 hidden
units, ReLU activation function, and a softmax output layer.
The number of FLOPs requested for computing one data
sample on this model is C = 203106 [7]. The model is
trained and then evaluated on the MNIST dataset. To study the
convergence properties under severe heterogeneity, we assume
that the number of data samples held by clients follows a
heavy-tailed Zipf distribution with an exponent of 0.5. For
performance comparison, we consider three benchmarks:

1) FedAsync [8]: Each client is assigned an orthogonal ded-
icated channel. Once a client completes its computation,
it immediately updates the global model.

2) TT-Fed [5]: The communication scheme is similar to
FedAsync, while the aggregation occurs only at the end
of each time slot.

We use channel capacity to estimate the time required
for digital communication in the above two methods,
assuming that model parameters/gradients are 16 bits.



3) AirFed [9]: The global model uses synchronous aggre-
gation, while the parameter server receives updates via
AirComp.

We use the pre-distortion algorithm proposed in [10]
for AirFed and our proposed async-AirFed, which min-
imizes the communication MSE under instantaneous av-
erage power constraints.

Fig. 2 plots the testing accuracy during training of our
proposed async-AirFed and other benchmarks. The tier num-
ber for async-AirFed and TT-Fed is set to be M = 10,
namely, ∆T = 0.1 ·maxu (τ

cp
u + τ cmu ). Gradient aggregation

is selected instead of model aggregation, and the accumulated
error truncation is deployed to async-AirFed to deal with
channel noise and interference. The truncation order is set to
be nt = 4. For a fair comparison, all schemes use the same
constant learning rate η = 0.05. The computational speed of
each client’s CPU is assumed to be fc = 1GFLOPS.

Due to noise and interference from AirComp and staleness
from async aggregation, the training curve of async-AirFed
shows strong fluctuations. However, it still has the highest
convergence rate compared to other benchmarks. It is observed
that although AirFed exists straggers issue, and is not proposed
to solve this problem, it still has a higher convergence speed
than the other two async aggregation algorithms in digital
communication due to the shorter communication latency. TT-
Fed is more suitable for scenarios with significant hetero-
geneity in sample classification [5], such as vertical federated
learning. Therefore, in our experiments which is a horizontal
FL setting, the convergence speed of TT-Fed is slower than
FedAsync.

0 10 20 30 40 50 60 70 80 90

Training Time(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
es

t 
A

cc
u

ar
cy

AirFed

FedAsync

TT-Fed

async-AirFed

Fig. 2. Testing accuracy during training our proposed async-
AirFed and other three benchmarks.

Fig. 3 plots the average time utilization among all clients
during the whole training process under the four schemes,
which further explains the reason why the four schemes have
different convergence speed. The labels “comp”, “comm”,
and “wait” in the legend represent the computation time, the
communication time, and the idle time waiting for stragglers,
respectively. Compared to AirFed that also utilizes AirComp,
our async-AirFed reduces the time to wait for stragglers from
84% to 9%. As a cost, the communication time increases from
3% to 16% because of higher aggregation frequency required
by async-AirFed. The maximum ratio of the increase in

AirFed FedAsync TT-Fed async-AirFed
0

10

20

30

40

50

60

70

80

90

100

T
im

e 
U

ti
li

za
ti

o
n
 P

er
ce

n
ta

g
e 

(%
)

comp

comm

wait

Fig. 3. Time utilization during model training.

communication time is less than the total tiers number M , with
the supremum reached when almost all clients are assigned to
the first tier. Compared to FedAsync and TT-Fed which utilize
asynchronous aggregation as well, the communication time of
our async-AirFed is reduced by 82% and 73% respectively,
therefore more time can be assigned to execute computation
tasks.

VI. CONCLUSION

In this paper, we proposed an asynchronous FL algorithm
that integrated with AirComp, namely async-AirFed. We fur-
ther analyzed the challenges brought by the combination of
async and AirComp and compared the impact of model aggre-
gation and gradient aggregation on convergence. We proposed
a simple truncation method to eliminate the accumulation of
errors. Our convergence analysis proved that async-AirFed
converges on non-convex optimality function with sub-linear
rate. Finally, our simulation results demonstrated that async-
AirFed could achieve more than 34% faster convergence
than benchmarks by improving the average time utilization
efficiency among all clients.

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, Apr. 2016, pp. 1273–1282.

[2] C. Zhang, Y. Xie, H. Bai, B. Yu, W. Li, and Y. Gao, “A survey on
federated learning,” in Knowl.-Based Syst., vol. 216, Mar. 2021, Art.
no. 106775.

[3] A. Şahin and R. Yang, “A survey on over-the-air computation,” in
arXiv:2210.11350, 2022.

[4] C. Xu, Y. Qu, X. Yong, and L. Gao, “Asynchronous federated learning
on heterogeneous devices: A survey,” arXiv:2109.04269, 2021.

[5] X. Zhou, Y. Deng, H. Xia, S. Wu and M. Bennis, “Time-triggered
federated learning over wireless networks,” in IEEE Trans. Commun.,
vol. 21, no. 12, pp. 11066-11079, Dec. 2022.

[6] Z. Chai, Y. Chen, L. Zhao, Y. Cheng, and H. Rangwala, “FedAT: A
communication-efficient federated learning method with asynchronous
tiers under non-IID data,” arXiv:2010.05958, 2020.

[7] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning
convolutional neural networks for resource efficient inference,” in Proc.
ICLR, Apr. 2017, pp. 1–17

[8] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv:1903.03934, 2019.

[9] G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Trans. Wireless Commun.,
vol. 19, no. 1, pp. 491–506, Jan. 2020.

[10] X. Zang, W. Liu, Y. Li and B. Vucetic, “Over-the-air computation
systems: optimal design with sum-power constraint,” in IEEE Wireless
Commun. Lett., vol. 9, no. 9, pp. 1524-1528, Sept. 2020.


