
AI Model Placement for 6G Networks under
Epistemic Uncertainty Estimation

Liming Huang, Yulei Wu, Juan Marcelo Parra-Ullauri, Reza Nejabati, and Dimitra Simeonidou
School of Electrical, Electronic and Mechanical Engineering, University of Bristol, BS8 1UB, Bristol, UK

{liming.huang, y.l.wu, jm.parraullauri, reza.nejabati, dimitra.simeonidou}@bristol.ac.uk

Abstract—The adoption of Artificial Intelligence (AI) based
Virtual Network Functions (VNFs) has witnessed significant
growth. This surge has introduced the critical challenge of
orchestrating AI models within next-generation 6G networks.
Finding optimal AI model placement is significantly more chal-
lenging than placing conventional software based VNFs, due
to the introduction of considerably more uncertain factors by
AI models, such as varying computing resource consumption,
dynamic storage requirements, and changing model performance.
To explore the important AI model placement problem in the
context of such epistemic uncertainties, this paper presents a
novel approach employing a sequence-to-sequence (S2S) neural
network integrated with uncertainty considerations. The S2S
model, characterized by its encoding-decoding architecture, is
designed to take the service chain with a number of AI models
as input and produce the corresponding placement of each AI
model. To address the introduced uncertainties, our methodology
incorporates orthonormal certificates and fuzzy logic as uncer-
tainty estimators, augmenting the capabilities of the S2S model.
Experiments demonstrate that the proposed strategy achieves
competitive results across diverse AI model profiles, network
environments, and service chain requests.

Index Terms—Network Function Virtualization, AI Model
Placement, Uncertainty, Fuzzy Logic, 6G

I. INTRODUCTION

With the deployment of 5G technology and its global
standardization, many efforts are intensified to explore the
future landscape of 6G networks. Virtual Network Function
(VNF) placement, a pivotal technique within Network Func-
tion Virtualization (NFV) for 5G, is poised to retain its crucial
role in shaping the architecture of 6G networks. Different from
conventional VNFs, typically reliant on specific functional
softwares, the evolving trend in 6G networks is the increasing
integration of VNFs driven by artificial intelligence (AI)
models [1] AI model-based VNFs possess a significant edge
over traditional software-based VNFs due to their adaptability
and efficiency1. Unlike traditional VNFs, AI models can
dynamically adjust to varying network conditions in real-time,
optimizing performance and resource allocation. Additionally,
AI models have the capability to self-learn and improve over
time, enhancing overall network functionality and reducing the
need for manual intervention. This superior adaptability and
self-optimization make AI models a more reliable and scalable
solution for modern network infrastructures, ultimately leading
to improved reliability, performance, and cost-effectiveness.

1In this paper, we refer to AI model-based VNFs as AI models, and to
traditional software-based VNFs as traditional VNFs.

There are noticeable differences between the placement of
traditional VNFs and the placement of AI models. Tradi-
tional VNF placement primarily deals with software functions
that often have fixed power consumption, running time, and
model size. These predetermined factors contribute to more
predictable placement strategies [2]. In contrast, AI model
placement introduces several challenges due to the inherent
uncertainties surrounding AI models. One of the primary chal-
lenges is the variability in computing resource requirements
of AI models. That is because AI models often necessitate
extensive training, the duration of which is unpredictable
and depends on factors such as dataset size, complexity, and
available computing resources. Varying training time brings
uncertain computing power and resource consumption in AI
model placement. Furthermore, the storage space required for
training AI models can vary significantly based on the model’s
architecture and the nature of the input data. This uncertainty
impacts the allocation and management of storage resources
within the network. Additionally, AI models’ operational per-
formance fluctuates based on changing network conditions
and evolving data patterns, making it challenging to predict
their efficiency and adaptability over time. Consequently, these
uncertainties surrounding computing resource, model storage,
and model performance pose significant hurdles in determining
optimal placement strategies for AI models within dynamic
network environments.

To this end, this paper focuses on the placement of AI
models and explicitly considers the impact of various epis-
temic uncertainties introduced by AI models. This problem
is formalized as a constrained combinational optimization
problem but it is NP-hard to solve [3]. Since it is impossible
to directly obtain the optimal solution for a given specific
instance, this paper adopts a neural combinatorial optimization
(NCO) strategy to solve the placement of AI models. The
NCO strategy is to train the neural network by constructing a
reinforcement learning (RL) environment where the RL reward
can help the neural network perform loss design and backprop-
agation without the need for supervised labels. To achieve
the AI model placement, we devise a sequence-to-sequence
(S2S) neural network with the encoder-decoder structure of
multiple Long Short-Term Memory (LSTM) modules. The
proposed S2S neural network, for a given Network Service
(NS) request, considers the state of the NFV infrastructure
and then learns a placement policy to minimize the overall
energy consumption while satisfying specific quality of service

(QoS) constraints. To solve the uncertainty issues, we propose
to use the Orthonormal Certificates (OCs) [4] for uncertainty
estimations, and then use the fuzzy logic to represent the
estimations and fuse them into the S2S model.

The main contributions of this paper are given as follows:

• This paper is the first of its kind to address AI model
placement problems for 6G networks, explicitly con-
sidering the uncertainties introduced by AI models due
to varying computing resource consumption, dynamic
storage requirements, and changing model performance.

• A sequence-to-sequence neural network is devised for this
problem. We adopt the neural combinatorial optimization
strategy to train the proposed network within an RL
environment.

• We propose to use the Orthonormal Certificates for un-
certainty estimations in AI model placement. Then, the
fuzzy logic is devised to represent uncertainty estimations
and fuse them into the sequence-to-sequence model.

• Experiments substantiate the competitive performance of
our model across a spectrum of AI model profiles, varying
network environments, and diverse service chain requests.
Notably, in scenarios where a service chain comprising
30 AI models is allocated to 20 servers, our model excels
with a remarkable request acceptance ratio that is 3 ∼ 4
times more than that of other related models.

II. RELATED WORK

A. VNF Placement

The VNF placement problem has garnered considerable at-
tention. Woldeyohannes et al. [5] addressed it through a multi-
objective integer linear programming approach, optimizing
admitted flows, node and link utilization, and meeting delay
requirements. Chen et al. [6] focused on delay-aware VNF
placement, introducing heuristic algorithms for optimal backup
VNF placement and routing to ensure NS availability while
minimizing transmission delays. Studies on VNF reusability
and sharing for cost reduction have been conducted as well.
Malandrino et al. [7] emphasized VNF placement within a sin-
gle physical node with shared instances among multiple NSs,
using an efficient heuristic to prioritize NSs while adhering to
delay requirements. Ren et al. [8] examined VNF reusability in
delay-aware multicast NS placement, developing algorithms to
maximize system throughput and minimize costs for admitted
multicast NSs while meeting delay requirements.

While the aforementioned research has made significant
strides in addressing VNF placement problems, it predomi-
nantly focuses on conventional software functions, overlooking
the increasingly prevalent usage of AI models. Moreover, the
uncertainties associated with AI models placement remain
unexplored within this body of work. This paper aims to delve
into this novel concern and investigates the implications of
deploying AI models, a dimension largely overlooked in prior
studies on VNF placement.

B. Uncertainty Learning

Uncertainty learning holds a key role in determining when
to abstain from predictions across various tasks. In deep learn-
ing, Natasa et al. [4] introduced neural network estimations for
aleatoric and epistemic uncertainties. In RL, Vincent et al. [9]
proposed the utilization of uncertainty estimation to alleviate
the adverse effects of noisy supervision, and introduced an
inverse variance RL approach to enhance sample efficiency
and overall performance.

Within VNF placement, prevailing research highlights un-
certainty as primarily originating from the dynamic nature of
the network environment, consequently necessitating adaptive
resource allocation strategies [10], [11]. However, in the
domain of VNF placement, limited attention has been directed
toward understanding uncertainty issues arising from the AI
training process. This paper uniquely centres on AI-based
VNF placement, delving into the exploration of an uncertainty
estimator that navigates epistemic uncertainty and fuzzy logic,
thus contributing to a more comprehensive understanding of
optimal AI model placement strategies in NFV.

III. PROBLEM FORMULATION

A. Problem Statement

This paper addresses the strategic placement of a variety of
AI models into a set of host servers, denoted as h ∈ H , in sup-
port of the delivery of network services. Each host server pos-
sesses limited computing, storage, and connectivity resources
(r ∈ R). The host servers are interconnected using specific
link connections (i ∈ L), each with its unique attributes such
as bandwidth and propagation delay. The primary aim is to
optimize the placement of AI models involved in a given
network service, minimizing the overall infrastructure power
consumption. This objective holds significant importance, as it
directly impacts operational costs, promotes sustainability by
reducing the carbon footprint, extends hardware lifespan, and
ensures long-term scalability. Beyond minimizing power con-
sumption, this strategic placement must align with constraints
concerning virtual resources availability, link capacities, and
the latency thresholds mandated by individual services. Mean-
while, the uncertainty factors brought by AI models should
also be considered in solving this problem.

Following the nomenclature in [3], the set of host servers
is denoted as {h1, h2, · · · , hn} within H , and A represents
the repository of available AI models. A network service
comprises an array of m ∈ {1, · · · ,M} AI models forming
a service chain s = (a1, a2, · · · , am) where a ∈ A. The
entire combinatorial space of these service chains is rep-
resented as S. The problem entails identifying the optimal
set of placements, denoted as x ∈ {0, 1}m×n, where xah

represents a binary status variable indicating whether an AI
model a ∈ A is placed in host h ∈ H (1 for positive
placement and 0 for negative). The search space for the
solution is Ω = x ∈ {0, 1}m×n s.t.

∑
h xah = 1, ∀a ∈ s,

where the constraint ensures each AI model is placed on
only one host server at a time. In order to more accurately

TABLE I: Problem Formalization Variables

1 H set of hosts
2 L set of links
3 A set of AI models
4 S set of NS chains
5 R set of resources
6 P set of placements
7 rh amount of resources r available in host h
8 ra amount of resources r requested by AI model a
9 W e

h idle power consumption of host h
10 W c

h /W g
h power consumption of each CPU/GPU in host h

11 Wnet power consumption per bandwidth unit on links
12 bi bandwidth of the link i

13 la latency due to computation time of AI model a
14 lsi latency on the link i produced by service chain s

15 bsa bandwidth demanded by a in service chain s

16 ls maximum latency allowed on the service chain s

17 xah binary placement variable for AI a in host h
18 yh binary activation variable for host h
19 gi binary activation variable for link i

restore the real network environment, we also introduce server
activation variables yh ∈ {0, 1} indicating whether the server
is executing any AI models (1 for active, and 0 for powered
off) and link activation variables gi ∈ {0, 1} signifying
whether a link carries traffic (1) or not (0).

In terms of power consumption, activated servers (yi = 1)
consume a minimum power W e

h and their power consumption
escalates with the cumulative CPU and GPU demand of
the placed AI models. Each unit of CPU and GPU in use
consumes W c

h and W g
h watts, respectively. Concerning links,

they too have an associated energy cost calculated based on the
power consumption of each bandwidth unit (Wnet multiplied
by bandwidth utilized in each link). Moreover, the resource
availability (r ∈ R) of each server h is denoted as rh. The
resource requirements of an AI model a are denoted as rtypea

for types c (CPU) or g (GPU). The bandwidth required for
data transfer of AI model a within service s ∈ S is denoted
as bsa. For each link, the maximum bandwidth allowed in link
i is represented as bi. For the latency requirement, la signifies
the latency due to the computation time of AI model a, and lsi
represents the latency in link i due to service s. The maximum
latency permitted for each service chain s is denoted as ls.
A summary of defined variables and problem parameters is
presented in Table I.

B. Mathematical Formulation

In previous VNF placement research [12], [13], host servers
are usually characterized by a certain power profile that grows
in proportion to the computing utilization because traditional
VNFs usually have fixed energy consumption. Therefore,
utilising our nomenclature, the optimized cost function with
certain relationships for VNF placement can be described as
follows:

argmin
x∈Ω

{ ∑
h∈H

[∑
a∈s

(W c
h · rca +W g

h · rga) · xah +W e
h · yh

]
+
∑
i∈L

∑
a∈s

Wnet · bsa · xah

}
(1)

s.t.∑
a∈s

ra · xah ≤ yh · rh,∀h ∈ H, r ∈ R (2)∑
a∈s

bsa · xah ≤ gi · bi,∀i ∈ L (3)∑
h∈H

∑
a∈s

la · xah +
∑
i∈L

∑
a∈s

lsi · xah ≤ ls,∀h ∈ H, i ∈ L (4)

where Eq. (1) represents the calculation of power consumption,
incorporating the summation of power usage attributed to acti-
vated servers and the collective expense associated with active
links. In Eq. (2), this constraint ensures that the total resource
usage within a server does not surpass the available resources
rh in active servers. Eq. (3) defines capacity constraints for
bandwidth. Lastly, Eq. (4) outlines constraints regarding the
latency requirements ls for a network service s which includes
the computing time of VNFs and the latency over the links.

In AI model placement, the AI training process generates
a range of uncertainties. Firstly, model training time t is an
uncertain factor for almost all AI models causing the dy-
namic computing resource consumption. Different input data,
network environment and available resources make model’s
training time vary considerably. Even using the same data
and training the same model in an static environment with
fixed parameter settings, the AI model’s training time may
also vary if we train the model twice given that the gradi-
ent descent of neural networks is stochastic. Secondly, the
storage space usage d is uncertain in the model training
process. For example, an AI model usually converges after
100 training epochs, and we usually save the trained model at
that epoch for use. However, in another training process for
this model, model convergence does not occur at the 100th
epoch, so the model will be stored from the 100th epoch to
the actual convergence epoch as we have empirically set the
model saving from the 100th epoch. Consequently, the storage
space usage increases for this training process. Thirdly, model
performance quality q is also an uncertain factor. Since the
gradient descent of neural networks is stochastic, and neural
networks usually have more than 10e4 parameters, the optimal
point achieved by the model in each training is difficult to be
the same although they are close. Therefore, in order to carry
out proper AI model placement, these three uncertainties have
to be considered, including computing resource consumption,
storage space usage d, and model performance quality q.

Considering the above-mentioned uncertainties in the place-
ment strategy shown in Eqs. (1)-(4), we formulate the opti-
mization of AI model placement as follows:

argmin
x∈Ω

{ ∑
h∈H

[∑
a∈s

(W c
h · rca · fc(t)) +W g

h · rga · fg(t)) · xah

+W e
h · yh

]
+

∑
i∈L

∑
a∈s

Wnet · bsa · xah

}
(5)

s.t.∑
a∈s

ra · xah ≤ yh · rh,∀h ∈ H, r ∈ R (6)

1a 2a ma

LSTMLSTM LSTMLSTM

Alignment Vector (,)v a

LSTM LSTM LSTM

Context Vector vcContext Vector vc

LSTM

place place place

Input

1 2(, , ,)ms a a a=

Network Service Chain

1 2(, , ,)ms a a a=

Network Service Chain

1p
2p mpOutput:

OCs and Fuzzy RepresentationOCs and Fuzzy Representation

Uncertainty Estimation

Fusion

Fig. 1: The framework of our AI placement model.

∑
a∈s

bsa · xah ≤ gi · bi,∀i ∈ L (7)∑
h∈H

∑
a∈s

la · xah +
∑
i∈L

∑
a∈s

lsi · xah ≤ ls,∀h ∈ H, i ∈ L (8)∑
a∈s

da · xah · fd(t) ≤ yh · dh,∀h ∈ H, d ∈ D (9)∑
a∈s

qa · xah · fq(t) ≥ qsla,∀h ∈ H (10)

where dh is the storage space available in host servers and
qsla is the minimum achieved model performance given by
the Service Level Agreement (SLA). fc(t) and fg(t) are power
consumption uncertainty functions for CPU and GPU. fd(t)
is the uncertainty function for storage space usage. fq(t) is
the model performance uncertainty function. The above three
functions all use model training time t as the independent
variable. In addition, the function mapping relationship for un-
certainties cannot be given a specific mathematical expression,
but can be learned through neural networks.

IV. LEARNING TO OPTIMIZE FOR AI MODEL PLACEMENT

A. Sequence-to-Sequence Model for Placement

For AI model placement tasks, an NS chain s =
(a1, a2, · · · , am) which includes the sequence of AI models
is the input. We aim to find the optimal server positions
ps = (p1, p2, · · · , pm) for each AI model in s to place,
following the stochastic policy πθ(ps|s). Since NS chains have
different lengths m ∈ (1, 2, · · · ,M), we adopt a sequence-to-
sequence model following [2], [14] which is devised to per-
form optimization problems with chains of different lengths.

The sequence-to-sequence (S2S) model adopts an encoder-
decoder architecture featuring stacked Long Short-Term Mem-
ory (LSTM) cells, as illustrated in Fig. 1. The decoder,
following the attention LSTM model proposed by Bahdanau
et al. [15], aligns with the input sequence’s length, producing
host placement outputs for each introduced component (i.e.,
AI model) from the encoder. The decoder’s hidden state
ρv = f(ρv−1, ρv−1, ct) evolves based on its prior state and
attention over the encoder’s hidden states. The context vector
ct is computed as the sum of weighted hidden states of the
input sequence, determined by alignment scores. Specifically,
for the decoder’s output step v, the context vector is given by
the equation:

cv =
∑

a
λ(v,a) · ρa, (11)

Our Model
Placement

Vector

Environment

State

Reward

State

Environment

AI 1 AI 4

AI 5

AI 3

AI 6

AI 2

AI 4

AI 3

AI 2 AI 5

AI 1

AI 6

Placement

h1 h1 h3 h4

h2 h3 h1

h3 h4 h4 h2 h3

AI Model Service Chains

AI 1 AI 4 AI 5 AI 3

AI 6 AI 2 AI 4

AI 3 AI 2 AI 5 AI 1 AI 6

s1

s2

s3

st

st+1

Rt

p1

p2

p3

h1

h2

h3

h4

Fig. 2: The learning framework for the S2S model with RL
environment.

where λ(v,a) defines the weight of each source hidden state
in the decoding process. This variable-size alignment vector
aligns with the source sequence length and is calculated by
scoring the current target hidden state of the decoder ρv with
each source hidden state ρa:

λ(v,a) = softmax
(
ω tanh(ξvρv + ξaρa)

)
, (12)

where ω, ξv , and ξa are weight matrices learned in the
alignment model. The prediction baseline bθ(s) is determined
by an auxiliary network, specifically an LSTM encoder linked
to a multilayer perceptron (MLP) output layer. This network
predicts the penalized energy cost produced by the agent
following the current policy, serving as a value approximator
based on the environmental state.

For S2S neural network learning, we use a RL environment
as shown in Fig. 2. Given an AI model based service chain
as the state, the S2S model is used for the policy network
to generate the placement vector (the action). And then, the
network environment can give the reward for S2S model
training. The constraints shown in Eqs. (6)-(10) are set to
the environment, so the model can determine whether the
constraints are met by interacting with the environment.

B. Orthonormal Certificates

The Orthonormal Certificate, as introduced in [4], serves
as an epistemic uncertainty estimator specifically designed
for neural networks. This set of certificates, denoted as
C = (C1, · · · , Ck), operates on a deep neural network
model expressed as y = f(ϕ(x)), where ϕ denotes a deep
feature extractor from the input data x, and f represents
the neural network function. The high-level representations
of training samples are organized into a dataset denoted as
Φ = ϕ(xi)

n
i=1, where n signifies the total data volume. Each

training certificate Cj is essentially a straightforward neural
network trained to map the dataset Φ to zero, accomplished
through the minimization of a loss function lc. As defined
in [4], the estimation of epistemic uncertainty, denoted as
ue(x), can be expressed as follows:

ue(x)
def
=

∥∥CTϕ(x)
∥∥2, (13)

where the calculation details of C can be obtained from [4].

TABLE II: Network Infrastructure Environment Settings

Network Environment with 10 Host Servers:
Host No. 1 2 3 4 5 6 7 8 9 10
CPU / GPU Capacity 10 9 8 7 6 6 6 6 6 6
Disk Size (GB) 10 10 10 8 8 8 6 6 6 6
Link Bandwidth (Mbps) 1000 1000 500 400 300 300 300 300 300 300
Link Lantency (ms) 30 50 10 50 50 50 50 50 50 50

Network Environment with 20 Host Servers:
Host No. 1 2 3 4 5 6 7 8 9 10
CPU / GPU Capacity 10 10 9 9 8 8 7 7 6 6
Disk Size (GB) 10 10 10 10 10 10 8 8 8 8
Link Bandwidth (Mbps) 1000 1000 1000 1000 500 500 400 400 300 300
Link Lantency (ms) 30 30 50 50 10 10 50 50 50 50
Host No. 11 12 13 14 15 16 17 18 19 20
CPU Capacity 6 6 6 6 6 6 6 6 6 6
Disk Size (GB) 8 8 6 6 6 6 6 6 6 6
Link Bandwidth (Mbps) 300 300 300 300 300 300 300 300 300 300
Link Lantency (ms) 50 50 50 50 50 50 50 50 50 50

TABLE III: AI Model Profiles

AI Model No. 1 2 3 4 5 6 7 8
Required CPU / GPU Capacity 4+∆1 3+∆2 3+∆3 2+∆4 2+∆5 2+∆6 1+∆7 1+∆8

Required Disk Size (GB) 4+Θ1 4+Θ2 3+Θ3 3 + Θ41 2+Θ5 2+Θ6 1+Θ7 1+Θ8

Required Bandwidth (Mbps) 100 80 60 20 20 20 20 20
Required Lantency (ms) 100 80 60 20 20 20 20 20
Task Completion Rate (%) 80+Υ1 80+Υ2 80+Υ3 80+Υ4 80+Υ5 80+Υ6 80+Υ7 80+Υ8

In our task, the training process of AI models generates
some uncertain factors such as the CPU consumption un-
certainty fc(t), the GPU consumption uncertainty fg(t), the
storage usage uncertainty fd(t), and the model performance
uncertainty fq(t). To estimate these uncertainties, we add
the OCs-based estimator as shown in Eq. (13) to the S2S
decoder as illustrated in §IV-A. Specifically, we consider the
uncertainty influence into the context vector cv as follows:

cv =
∑

a
λ(v,a) · ρa · F

{
ue(xa)

}
, (14)

where F
{
ue(xa)

}
is the fuzzy logic-based uncertainty em-

bedding which we will detail in the next section.

C. Fuzzy Logic

For the input NS chain s = (a1, a2, · · · , am), we obtain
the epistemic uncertainty estimation ue for each AI model
based on the formulation in Eq. (13). As detailed in §IV-A, the
context vector cv encapsulates alignment scores for AI mod-
els. Thus, we use fuzzy logic to incorporate the uncertainty
estimation ue into the context vector cv , effectively accounting
for uncertainties in AI model placement.

1) Fuzzy Representation for Uncertainties
Given the epistemic uncertainty estimation ue, we denote

lu as the layer number, fu
i is the i-th node, and oui is the

corresponding fuzzy output. To compile uncertainty into a
neural network, we adopt the fuzzy representation proposed
in [16] to assess the degree to which an input node belongs
to a specific fuzzy set. Therefore, the i-th fuzzy neuron
ni(·) : R → [0, 1] maps the k-th input as the fuzzy degree:

oui = ni (f
u
i) = e−(fu

i −µi)
2/σ2

i ∀i. (15)

The Gaussian membership function with mean µ and variance
σ2 is utilized in this representation.

2) Fusion Part

TABLE IV: Experimental Results of Our Method with Different
Number of NS Requests, Hosts, and AI Models of a Service Request

No. of
NS Requests

No. of
Hosts

Service
Length

NS Request
Accept Ratio

No. of
NS Requests

No. of
Hosts

Service
Length

NS Request
Accept Ratio

64

10

12 98.4%

128

10

12 97.6%
14 85.9% 14 82.0%
16 46.9% 16 43.8%
18 12.5% 18 12.5%

20

20 95.3%

20

20 95.3%
24 93.7% 24 92.2%
28 70.3% 28 68.7%
30 35.9% 30 37.5%

To combine uncertainty estimations with context vectors,
we also need to convert the context vector cv into high-level
representations. Therefore, the representation output oci for the
i-th node f c

i of the context vector cv is given as follows:

oci =
1

1 + e−fc
i
. (16)

Then, we can fuse uncertainty estimations with context
vectors as follows:

F
{
cv, ue

} def
= wc

i o
c
i + wu

i o
u
i + bi, (17)

where wc
i and wu

i are the weight coefficients and bi is the bias
coefficient.

V. EVALUATION

A. Experimental Settings

In this paper, for the sake of illustration, we consider the
infrastructure with two different sizes with 10 host servers
and 20 host servers respectively for evaluation; the proposed
solution is able to handle any network size. The detailed
settings of network infrastructure environments are given in
Table II. The AI model profiles are given in Table III, where
∆i, i ∈ {1, 2, · · · , 8}, Θj , j ∈ {1, 2, · · · , 8} and Υk,
k ∈ {1, 2, · · · , 8} are the uncertain variables randomly gener-
ated by two distributions including the “normal” distribution
and the “uniform” distribution using Python “numpy” library.
Power consumption parameters in Eq. (5) are given as follows:
W c

h = W g
h = 200, W e

h = 100 and Wnet = 0.1. For model
parameters, the learning rate is set to 0.0001, the LSTM layer
number is set to (1, 3, 4) and the LSTM hidden size is set to
(32, 64, 128) according to [2], [14].

B. Comparison Baselines and the Evaluation Metrics

Baselines: We evaluate our method in comparison with
three baseline models, including NCO [2], Gecode solver [17]
and First Fit (FF) heuristic algorithm [18]. The NCO is a
deep RL method for VNF placement Optimization without
uncertainty considerations. The Gecode solver is an algorithm
based on the classical Branch and Bound paradigm. The FF
algorithm is designed with the heuristic first fit strategy.

The Metric: The NS request acceptance ratio is used as
the evaluation metric in the experiment which is defined as
the ratio of the number of successfully placed requests to the
total number of requests. For example, if 100 requests are
received and the number of successfully placed is 50, then the
acceptance ratio is 50%.

No. of AI Models per NS Request

N
S

 R
eq

u
es

t
A

cc
ep

ta
n

ce
 R

at
io

 (
%

)

0

20

40

60

80

100

12 14 16 18

Ours

NCO

Gecode

FF

0

20

40

60

80

100

20 24 28 30

Ours

NCO

Gecode

FF

No. of AI Models per NS Request

N
S

 R
eq

u
es

t
A

cc
ep

ta
n

ce
 R

at
io

 (
%

)

(a)

No. of AI Models per NS Request

N
S

 R
eq

u
es

t
A

cc
ep

ta
n

ce
 R

at
io

 (
%

)

0

20

40

60

80

100

12 14 16 18

Ours

NCO

Gecode

FF

0

20

40

60

80

100

20 24 28 30

Ours

NCO

Gecode

FF

No. of AI Models per NS Request

N
S

 R
eq

u
es

t
A

cc
ep

ta
n

ce
 R

at
io

 (
%

)

(b)

Fig. 3: Comparisons with NCO [2], Gecode [17] and FF [18]
with 128 NS requests in (a) 10 hosts and (b) 20 hosts.

C. Model Performance with Different Requests

To evaluate the proposed model, we first generate 64 NS
requests to place them one by one. With the network en-
vironment with 10 hosts, we evaluate a chain consisting of
12, 14, 16, and 18 AI models in sequence. With the network
environment with 20 hosts, we choose a chain consisting of
20, 24, 28, and 30 AI models. From the results in Table IV, we
can see that our model can achieve more than 90% successful
placement for AI models with the considered uncertainties at
⟨ Length 12, Host number 10 ⟩ and ⟨ Length 20 and 24, Host
number 20 ⟩ for both 64 and 128 requests. This illustrates that
our model has good deployment capabilities for AI models
with uncertain properties. To reflect the level of deployment
capabilities, we conduct comparative experiments between the
proposed method and other related models in the next section.

D. Comparison with Other Models

To further validate the proposed approach, we compare our
model with the NCO [2], Gecode solver [17] and the First Fit
(FF) heuristic algorithm [18]. The experiment is conducted
using 128 NS requests, and the results are shown in Fig. 3.
The results illustrate that the placement successful ratio of
our method is significantly better than that of the other three
methods when dealing with network service requests with
different number of AI models, because our model has an
estimate of the AI model uncertainties and takes it into account
in resource allocation.

VI. CONCLUSION

This paper addressed the critical challenge of AI model
placement in next-generation networks, particularly in the
context of 6G, where VNFs heavily rely on AI implementation.
The inherent uncertainties introduced by AI models, including
varying computing resource requirements, changing perfor-
mance, and unpredictable storage requirements, make optimal
model placement more complex compared to conventional
software based VNFs. To tackle this problem, we proposed
a novel neural combinatorial optimization strategy, employing
a S2S neural network trained in an RL environment. To
handle the introduced uncertainties, we incorporated OCs and
fuzzy logic as uncertainty estimators to enhance the S2S
model. Our experimental results demonstrate the effectiveness

of the proposed strategy, showcasing competitive performance
in addressing the challenges associated with AI model place-
ment in the presence of epistemic uncertainties. This research
contributes valuable insights to the ongoing development of
next-generation networks by providing a robust and adaptive
solution for optimal AI model placement.

ACKNOWLEDGEMENTS

This work has been partially sponsored by the UK GOV
DSIT (FONRC) project REASON.

REFERENCES

[1] W. Attaoui, E. Sabir, H. Elbiaze, and M. Guizani, “Vnf and cnf
placement in 5g: Recent advances and future trends,” IEEE Transactions
on Network and Service Management, pp. 1–1, 2023.

[2] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE Journal on Selected Areas in Communi-
cations, vol. 38, no. 2, pp. 292–303, 2020.

[3] A. Marotta, F. D’andreagiovanni, A. Kassler, and E. Zola, “On the
energy cost of robustness for green virtual network function placement
in 5g virtualized infrastructures,” Computer Networks, vol. 125, pp. 64–
75, 2017.

[4] N. Tagasovska and D. Lopez-Paz, “Single-model uncertainties for deep
learning,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[5] Y. T. Woldeyohannes, A. Mohammadkhan, K. K. Ramakrishnan, and
Y. Jiang, “Cluspr: Balancing multiple objectives at scale for nfv resource
allocation,” IEEE Transactions on Network and Service Management,
vol. 15, no. 4, pp. 1307–1321, 2018.

[6] Y. Chen and J. Wu, “Latency-efficient vnf deployment and path routing
for reliable service chain,” IEEE Transactions on Network Science and
Engineering, vol. 8, no. 1, pp. 651–661, 2021.

[7] F. Malandrino, C. F. Chiasserini, G. Einziger, and G. Scalosub, “Reduc-
ing service deployment cost through vnf sharing,” IEEE/ACM Transac-
tions on Networking, vol. 27, no. 6, pp. 2363–2376, 2019.

[8] H. Ren, Z. Xu, W. Liang, Q. Xia, P. Zhou, O. F. Rana, A. Galis, and
G. Wu, “Efficient algorithms for delay-aware nfv-enabled multicasting
in mobile edge clouds with resource sharing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 31, no. 9, pp. 2050–2066, 2020.

[9] V. Mai, K. Mani, and L. Paull, “Sample efficient deep reinforcement
learning via uncertainty estimation,” arXiv preprint arXiv:2201.01666,
2022.

[10] X. Wang, C. Wu, F. Le, and F. C. Lau, “Online learning-assisted vnf
service chain scaling with network uncertainties,” in 2017 IEEE 10th
International Conference on Cloud Computing (CLOUD), 2017, pp.
205–213.

[11] Y. Xie, S. Wang, B. Wang, and L. Luo, “Migration aware virtual network
function placing and routing in uncertain environment,” in GLOBECOM
2020 - 2020 IEEE Global Communications Conference, 2020, pp. 1–6.

[12] S. Agarwal, F. Malandrino, C.-F. Chiasserini, and S. De, “Joint vnf
placement and cpu allocation in 5g,” in IEEE INFOCOM 2018-IEEE
conference on computer communications. IEEE, 2018, pp. 1943–1951.

[13] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal vnf placement via
deep reinforcement learning in sdn/nfv-enabled networks,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 2, pp. 263–278, 2019.

[14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing
systems, vol. 27, 2014.

[15] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[16] Y. Deng, Z. Ren, Y. Kong, F. Bao, and Q. Dai, “A hierarchical fused
fuzzy deep neural network for data classification,” IEEE Transactions
on Fuzzy Systems, vol. 25, no. 4, pp. 1006–1012, 2017.

[17] C. Schulte, M. Lagerkvist, and G. Tack, “Gecode,” Software download
and online material at the website: http://www. gecode. org, pp. 11–13,
2006.

[18] S. Kumaraswamy and M. K. Nair, “Bin packing algorithms for virtual
machine placement in cloud computing: a review,” International Journal
of Electrical and Computer Engineering, vol. 9, no. 1, p. 512, 2019.

