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A B S T R A C T

This paper introduces an intelligent network service orchestration platform, referred to as 5G-VIOS for 5G
networks and beyond in accordance with the Zero-touch Network and Service Management (ZSM) paradigm.
The proposed solution is responsible for an automated network slicing and life-cycle management of network
applications and services, across multiple administrative and technological domains. An Artificial Intelligent
(AI) model utilising Machine Learning (ML) techniques is exploited to intelligently and efficiently profile the
network services and predict the efficient configuration of resources needed to meet the performance targets
and Service Level Agreements (SLAs) of these network services across multiple domains. We test and validate
the performance of the prediction models for both resource configuration and utilisation in various settings
for different resources and data rates. We also showcase how resource utilisation predictions of a virtualised
network service can significantly assist in its life cycle management by proactively preventing unnecessary
actions such as its migration.
1. Introduction

The advances in mobile network technologies with the advent of
5G have introduced new capabilities supporting numerous diverse use-
cases requiring high throughput, ultra-low latency, and high connection
density, which are not achieved by the current one-size-fits-all network
designs. This necessitates upgrading the network with the capability
of flexible autonomous service deployment and on-demand networking
for different use-cases.

Network slicing is considered a promising solution for creating
service-customised 5G networks that efficiently harness the capabil-
ities of evolving technologies such as Software-Defined Networking
(SDN) and Network Function Virtualisation (NFV). Network slicing
exploits programmability and modularity during allocating the network
resources to specific vertical service requirements and thus, trans-
forms network resource provisioning from one-size-fits-all to one-size-
per-service methodology. Each network slice instance works as an
end-to-end logical ‘‘dedicated’’ network over the same underlying phys-
ical networks. Network slices, customised and allocated to a specific
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use-case, can stretch across larger geographical areas with multiple
administrative domains.

Deploying a slice across multiple domains is challenging not only
from the perspective of decomposing the slice request into the re-
spective administrative domain but also for guaranteeing its perfor-
mance [1]. This necessitates designing a MANagement and Orchestra-
tion (MANO) platform that can deploy inter-domain network slices.
This paper mainly addresses the scenarios being investigated by the
Horizon2020 5G-VICTORI Project [2], specifically leveraging the in-
frastructure and resources available at different facilities for delivering
Network Slice as a Service (NSaaS) on demand to the user. The functional
architecture of the project is illustrated in Fig. 1. The 5G-VICTORI
platform develops an open data management platform for scalable data
collection, aggregation and processing across the various project infras-
tructure sites, adopting ML and Artificial Intelligence (AI) techniques to
offer optimised vertical services.

A thin inter-domain orchestration layer on top of the orchestration
solutions of the individual facility sites is developed to enable dynamic
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Fig. 1. 5G-VICTORI functional architecture.

inter-site connectivity, inter-domain orchestration, and support on-
boarding of inter-domain services as well as end-to-end slice monitoring
and management for the deployed end-to-end services. This thin or-
chestration layer is referred to as 5G-Victori Infrastructure Operating
System (5G-VIOS) responsible for the Life Cycle Managements (LCMs)of
NSaaS. The selected modules of the 5G-VIOS platform enable the
implementation of an intelligent inter-domain orchestrator to deploy
network services across domains and provide the capability to effi-
ciently exploit and interact with the available underlying technologies
such as MANO platform, SDN controller, and the monitoring platform
available at different facility sites. 5G-VIOS architecture has adopted a
cloud-native and microservice-based design, allowing individual com-
ponents to be developed and extended in parallel, providing flexibility
and adaptability. All the modules work in unison to deliver efficient
management of NSaaS to the user. Currently, docker containers for each
5G-VIOS module and a user manual with information for installation
and automated deployment are publicly available [3].

The current MANO systems and recent advancements in Network
Service (NS) orchestration have made significant progress in managing
and profiling NSs. However, they lack the capability to autonomously
and simultaneously support key functionalities such as E2E autonomous
orchestration and management of NSs across multiple domains, sup-
porting seamless connectivity, and migration of NSs in case of mobility
of the users, finding a deep knowledge about the NS profiles by using
profiling models, and optimising the resources assigned to NSs using ML
techniques to prevent unnecessary migration of NSs. In this paper, we
provide a high-level overview of the components within the 5G-VIOS
architecture and to address the mentioned gaps we detail how the
5G-VIOS orchestrates and manages the NSs across multi domains. We
also describe how the profiling models assist the 5G-VIOS to select the
optimum amount of resources and prevent the unnecessary migration
of NSs due to the lack of required resources.

The rest of the paper is organised as follows. Section 2 presents
background and state of the art review on the related work. The
detailed description of the proposed 5G-VIOS platform is presented in
Section 3 followed by the description of network slice management
2

Table 1
SoA projects targeting cloud-native cross-domain orchestration.

Mobility
support

Business
automation

Cross-domain
monitoring

Profiling

5G-VICTORI ✓ ✓ ✓ ✓

5GUK Exchange [7] ✓

5G-VINNI [8] ✓ ✓

5G-EVE ✓ ✓

INSPIRE 5GPlus [9] ✓ ✓

5GZORRO [10] ✓ ✓ ✓

in Section 4. In Section 5, experimental setup and the deployment
of 5G-VIOS are explained, followed by our experimental evaluation
results discussed in Section 6 while the conclusion and future works
are described in Section 7.

2. Related works

For the LCM and orchestration of NSs, a reference architectural
framework has been developed by the ETSI ISG NFV, commonly known
as the ETSI NFV Management and Orchestration (ETSI NFV MANO) [4].
Two popular orchestration platforms, Open Source MANO (OSM) by
European Telecommunications Standards Institute (ETSI) and Open
Network Automation Platform (ONAP) by the Linux Foundation, are
fully compliant to the ETSI NFV MANO framework and support multi-
technological domains (i.e., SDN and NFV). Although the aforemen-
tioned orchestration frameworks were initially designed for the LCM
of a NS and a Virtualised Network Function (VNF), their components
were extended to support the LCM of a network slice. Network Slice
Management Function (NSMF) and Network Slice Subnet Management
Function (NSSMF) have been implemented by both solutions (OSM,
ONAP) based on 3GPP TR28.801 specification [5]. These orchestra-
tion frameworks can efficiently deploy and manage the network slice
within a single administrative domain. However, they still lack flexi-
bility while managing network slices across different administrative do-
mains [6]. This flexibility relates to the way these platforms orchestrate
the underlay network infrastructure. Existing solutions mostly focus
on deploying network services and do little or nothing to configuring
networking, particularly for inter-domain network configurations. This
limitation does not allow to create complex/adaptive inter-domain
services and thus network slices.

The establishment of a multi-domain network slice instance lever-
ages the benefits of recursive virtualisation. In this work, a domain is
represented by an edge infrastructure/facility which utilises a MANO
system to deploy, connect and manage the NSs. The challenge for inter-
edge orchestration is not only limited to interconnecting the various
edges that are geographically located apart over a secure Wide Area
Network (WAN), but also interacting with the different administrative
domain technologies such as local orchestrator, monitoring platform,
SDN controller, etc. Several State of the Art (SoA) projects have ex-
tended these tools or have been developing similar MANO systems
to fit their use case needs and also support multi-domain orchestra-
tion. However, their solutions lack support for mobility and optimal
resource deployment. A comparison of 5G-VIOS’s features against other
platforms and projects targeting cloud-native cross-domain orchestra-
tion with a separate governance domain that manages the different
administrative domains/facilities is presented in Table 1.

For example, 5GUK Exchange [7] creates an inter-domain orches-
tration brokering solution built upon the OSM. Additionally, it incor-
porates dynamic service-based L2 cross-site connectivity capabilities.
However it does not support the seamless connectivity while users
move or assigning optimum resources to the NSs. 5G-VINNI [8] and
5G-EVE [11] both perform inter-domain NS deployment but without
the integration of a monitoring data consumer for ML-based profiling of

NS performance. INSPIRE5GPlus [9] uses the ETSI Zero-touch network
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Table 2
List of acronyms.

Acronym Full form

NSSMF Network Subnet Slice Management Function
NSMF Network Slice Management Function
SMF Slice Management Function
NSaaS Network Slice as a Service
PRO Profiling
MON Monitoring
SBR Service Broker
SMA Service Manager
MOB Mobility Manager
ICM Inter-edge Connectivity Manager
EPA Edge Proxy
REP Repository
SCO Service Composer
GUI Graphical User Interface
AGA API Gateway
NWDAF Network Data Analytics Function
NEF Network Exposure Function
NRF Extended Network Repository Function
AF Application Function
SEPP Secure Edge Protection Proxy
CAPIF Common API Framework

and Service Management (ZSM) reference architecture for trustwor-
thy interconnection of different administrative domains, nevertheless
does not focus on ML-based profiling and mobility support. Finally,
5GZORRO [10] focuses on the implementation of a zero-touch security
and trust implementation again without proposing a service migration
workflow.

The key innovations of 5G-VIOS are focused on mobility manage-
ment and providing seamless connectivity while users move, optimising
the resource allocation through profiling models, as well as extending
inter-domain orchestration with L3 connections. In this work, we de-
fine ‘experiments’ as network slices with predefined requirements that
are used to construct end-to-end services. Fig. 2 portrays the high-
level functional architecture of the 5G-VIOS framework connecting
two reference facilities. The design principle of 5G-VIOS follows a
microservice-based architecture in which components communicate
with each other over a common service bus using open Application Pro-
gramming Interfaces (APIs). Through a secure edge proxy and authen-
tication/authorisation mechanisms, i.e. Secure Edge Protection Proxy
(SEPP) and Common API Framework (CAPIF), each facility owner has
full control over the exposed information and the rules associated
with the API access for untrusted applications. The platform acts as a
trusted neutral mediator between facility owners, service developers,
and Vertical users minimising contractual, legal, and communication
overheads.

3. 5G-VICTORI infrastructure operating system (5G-VIOS)

The end to end reference architecture of 5G-VIOS, as shown in
Fig. 2, closely resembles that of the 5G Service Based Architecture
(SBA). In this architecture, the 5G-VIOS components are interconnected
in a manner similar to the 5G SBA Network Functions (NFs). De-
tailed information about this E2E reference architecture can be found
in [13]. In essence, the 5G-VIOS components extend specific 5G NFs,
including the SEPP, Network Exposure Function (NEF), and Extended
Network Repository Function (NRF), to facilitate inter-domain connec-
tivity and services. This implies that functionalities of certain 5G NFs
are integrated into the 5G-VIOS components. More specifically, the
components defined by 3GPP are mapped to corresponding 5G-VIOS
components, as detailed in corresponding functional blocks below. In
addition, the list of acronyms used in the 5G-VIOS description are
provided in Table 2.

• Portal (GUI): experiment owners/users manage, deploy and visu-
ally monitor experiments and their performance via a web-based
portal.
3

• Edge Proxy (EPA): an extension of 3GPP’s SEPP [14], Edge
Proxy (EPA) facilitates secure communication between 5G-VIOS
and edge facilities. It supports functions such as access token
generation, bootstrapping, NF discovery, and NF management.
EPA employs CAPIF to expose facility capabilities to the common
Application Function (AF) repository in 5G-VIOS, ensuring se-
cure communication with edge orchestrators and offering North-
bound APIs for various edge components. Communication be-
tween the 5G-VIOS administrative domain and the Edge Proxy(s)
is permitted through the API Gateway (AGA).

• Repository (REP): 5G-VIOS enhances the NRF of the SBA 5GC
[15] by deploying a common repository to gather NF information
and supporting inter-domain NSs. Local Extended NRFs at each
facility discover available NF instances, record Virtual Network
Service Descriptors (VNSDs), and maintain information about NSs
such as NS profiles, EPAs, and VNSDs for edge orchestrators.

• Service Composer (SCO) composes inter-edge VNSDs based on
user-selected NSs for deployment on edge facilities. It creates
inter-domain network service descriptor (iNSD) templates and
defines transport subnet slices for network slices.

• Service Broker (SBR) acts as an intermediary between the EPA
and the rest of the 5G-VIOS components. It checks the resource
availability at each edge with the help of the Profiling system
and NEF. NEF provides user-friendly tools for exposing 3GPP
network services and capabilities via northbound RESTful APIs.
This implementation can be scaled to multiple domains through
the Service Broker (SBR) component of 5G-VIOS, which exposes
different edge capabilities and services in the common infrastruc-
ture (5G-VIOS) and instantiates inter-domain services through the
Service Composer (SCO) and other 5G-VIOS components.

• Service Manager (SMA) manages the lifecycle of inter-edge net-
work slices and includes functions of NSMF and NSSMF [5]. It
deploys required NSs, establishes transport networks, monitors
NSs, and manages slice instances.

• Inter-edge Connectivity Manager (ICM) deploys transport net-
works to enable secure communication between services on dif-
ferent edges. It serves as a bootstrapping point, connecting edges
to 5G-VIOS, and establishes data paths for inter-domain network
slice instances.

• Mobility Manager (MOB) ensures service continuity during NS
migration between edges. It efficiently migrates NSs to target
edges, terminates redundant services, and instructs ICM to adjust
the transport network.

• Profiling (PRO): a Profiling instance is integrated into each facil-
ity, allowing it to generate the performance records of NSs, profile
them, and manage them by using the prediction models. As the
profiling entity of the 5G-VIOS, we apply NAP [16] which is an
autonomous VNF profiling method, considering multiple resource
types (e.g., CPU, memory, and network) at the same time. There
are some other profiling solutions for VNFs in the literature, such
as [17,18], and [19] however, these existing solutions for NFV
MANO do not automate the entire process (from benchmarking
to data analysis) of profiling. The authors in [20,21] propose
some methods for profiling the whole service function chain
performance behaviour. However, their automation capability is
limited, and they do not consider the profiling results of each
constituent VNF individually.
Computational profiles are created for the corresponding VNFs
by utilising the collected monitoring information in combination
with the selected resource configuration weights. More precisely
and being a time-sensitive process, the Profiling weighted ran-
domly selects the most impacted configuration of resources using
the Weighted Resources Configuration Selection (WRCS) algo-
rithm [16]. The edge Profiler generates the ‘‘performance dataset
records’’ of the VNFs and NSs at each facility before the central

Profiler within 5G-VIOS creates a performance model for the
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Fig. 2. An overview of the 5G-VIOS architecture [12].
inter-edge NSs and predicts the optimum network configuration
and resource allocation (e.g., CPU cores, RAM, storage, and link
capacity).
Through the usage of Profiling, the 5G-VIOS extends Network
Data Analytics Function (NWDAF) to inter-domain architectures,
enhancing performance analysis; it collects and analyses moni-
toring data from various sources, utilises ML techniques to pre-
dict network configuration and resource allocation for NSs, and
facilitates mobility services and auto-scaling based on Quality-of-
Service (QoS) measurements.

• Monitoring System (MON): as shown in Fig. 3, the Monitor-
ing (MON) system has two entities; one runs locally at each
edge facility and collects metrics from different components,
while the other runs within 5G-VIOS and collects the aggregated
inter-domain data. The monitoring data is differentiated for each
network slice, thus providing slice-specific information within
a multi-slice environment. MON pulls monitoring information
directly from the underlying NFV Orchestrator (NFVO), applica-
tions services, infrastructure, and monitoring tools such as the
Prometheus stack [22]. Data visualisation is then made available
in the form of performance figures through a dashboard in the
5G-VIOS Portal. In addition, the monitoring data is ingested in-
ternally by the Profiling system, which measures the KPIs attained
for the requested services and generates performance profiles. The
monitoring metrics as well as the Performance dataset records are
stored using the Elastic stack (Elasticsearch, Logstash, etc.) data
repository [23]. Please refer to [13] for more details on various
telemetry components at the edges.

4. Network slice as a service workflow

5G-VIOS offers an easy and automated way to deploy and man-
age network slices across multiple domains. 5G-VIOS micro-services
are linked over a common service bus delivering the functionality
illustrated in Fig. 4.

Different scenarios with respect to the deployment location of the
AF can be implemented depending on the capabilities of the facility
controlling the Vertical application, as well as the server hosting the
application (i.e. the Application Server (AS)). The role of AF in the
provisioning of services with enhanced Quality-of-Experience (QoE) is
critical. The feedback received from the application can influence the
end-to-end network configuration and resource allocation, including
4

the traffic routing and steering decisions of the Subnet Management
Function (SMF), the selection of the Mobile Edge Computing (MEC)
platform hosting the AF, the adaptation of the trigger rate, the exposure
of statistics to the analytics function, etc. In multi-domain scenarios,
CAPIF enables the inter-edge functionality of the AF.

5G-VIOS can facilitate the public–private network connectivity and
orchestration. For example, the platform can be deployed within a
trusted facility (i.e., public operator) and provide services to a non-
trusted facility (private operator). To support low-latency services,
each facility can host any vertical application, e.g. ‘‘AppX’’, on a local
MEC platform and have it controlled by the AS functionality within
the 5G-VIOS. Network metrics and statistics from each facility are
exposed to the monitoring and network analytics modules of 5G-VIOS
through SEPP. Based on the collected metrics (including user informa-
tion and location) and the application-specific performance targets, the
AF affects traffic routing and steering, as well as the MEC selection
process.

The NSaaS workflow is initiated by a vertical end-user, who can
request a new network slice/service through the Portal (GUI). The
5G-VIOS Portal component provides the front-end for users to create,
manage, and monitor their network slices. The end-users can create an
experiment by selecting a set of NS packages available at the distinct
edges (as advertised in the common repository), along with the required
performance targets and QoS used by the Profiler. This information
is compiled into an iNSD and used to deploy the NS across different
facilities.

The deployment of an inter-domain network slice is done in two
phases:

1. For the initiate phase, 5G-VIOS performs a resource check at
each deployment edge. Then, a Profiling request and a resource
prediction are made, and the orchestrators at the corresponding
edges are signalled with the relevant resource allocations and
descriptor checks.

2. Once successful, SMA starts the network slice deployment or
instantiation phase. The composed iNSD is forwarded to the SMA
component and is parsed into a template. The SMA identifies
all required NSs and sends a POST request to the SBR micro-
service, which is then forwarded to the EPA at each edge/facility
using SOL005 APIs. EPA request is processed, and an instantia-
tion request is sent to the edge orchestrator (e.g. OSM), which
then instantiates the NS at the requested virtual infrastructure
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Fig. 3. E2E Monitoring at 5G-VIOS.
Fig. 4. 5G-VIOS workflows for creation, instantiation, deployment, migration, and termination of an experiment.
(i.e., OpenStack or Kubernetes). A VLAN is allocated to the de-
ployed NS, allowing intra-slice communication within the edge.
Once all the services of the network slice are instantiated, the
ICM is instructed to create the corresponding transport network
and subnet, which is based on the DMVPN architecture.

One key innovation target for 5G-VIOS is the introduction of mobil-
ity management within the LCM of the NS. This would offer seamless
service and QoS continuity to vertical users while they move. When an
AppX requests a service migration, the MOB makes requests to recom-
pose the iNSD with the new target edge of the NS, after coordinating
with the corresponding edge orchestrator. The new recomposed iNSD
is then forwarded to the SMA, which requests a new NS deployment
to the target EPA. Once the instantiation of the NS is successful, SMA
terminates the previous NS instance from the current edge by sending
a request to the EPA. If the end-user no longer requires the service, the
network slice can be terminated through the Portal, releasing all related
computational and network resources.
5

At the level of individual facilities, other functional entities may
coexist with the edge orchestrators to assist in the intra-domain man-
agement of network slices. Such is the case of the Nomadic Node edge
at the Bristol facility as one of the edges orchestrated by 5G-VIOS in
5G-VICTORI [24]. In particular, within this facility, the i2Slicer has
been introduced for the management of network slices that span from
the core and edge segments towards the Radio Access Network (RAN)
while integrating multiple Radio Access Technologies (RAT) [25]. The
primary objective of i2Slicer is to deliver both multi-tenancy and multi-
service capabilities within the 5G network framework [26]. While
achieving multi-tenancy can be realised through techniques like MOCN
(Multiple Operator Core Network) and RAN sharing, a robust support
system for multi-service functionalities necessitates a disaggregated
deployment approach that leverages 5G network slicing [27]. This
approach ensures dynamic and efficient resource management in align-
ment with the status and requirements of the various services offered.
As depicted in Fig. 5, our designed disaggregated slicing approach
comprises two fundamental components: a common control plane with
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Fig. 5. i2Slicer: Multi-RAT network slicing architecture.
shared NFs serving all slices under a common operator or tenant, and an
isolated user plane with dedicated SMF (Session Management Function)
and UPF (User Plane Function) instances for each slice.

It is essential to highlight that our system supports multi-tenancy
through MOCN, achieved by deploying additional control planes and
dedicated data plane slices when required. Additionally, as illustrated
in Fig. 5, it supports the deployment of multi-RAT slices by integrating
the data planes of Wi-Fi and 5G RAN. The deployed multi-RAT slices are
monitored through custom Prometheus Exporters, and the generated
metrics are integrated into the MON system, as depicted in Fig. 3.

After the activation of slices within the Bristol facility, users can
initiate requests via 5G-VIOS for the deployment of their vertical
applications. These applications are seamlessly interconnected with
the dedicated VLAN associated with the respective slice. This setup
guarantees swift and low-latency access to these services, accessible
from devices connected via both Wi-Fi and the 5G RAN.

5. Experimental setup

Fig. 6 describes the experiment setup. 5G-VIOS is used to deploy ap-
plications’ inter-edge NSs at three stationary edges (Smart Internet Lab,
WTC, MShed) and a non-stationary edge (Nomadic Node), providing
the necessary intra- and inter-domain management and orchestration to
enable end-to-end service provision and mobility. The Nomadic Node
is a combination of networking (5G RAN/Core, Wi-Fi 6 AP, switches,
customer-provided equipment (CPEs)), computational (servers), and
software components as shown in Table 3 that provides a portable
small-scale capability and services of a fully operational e2e network,
including the cloud, the core, and the RAN. MEC capability is also avail-
able, which allows the instantiation of the different application services
locally. The Nomadic Node backhaul connectivity to the network is
delivered via multiple wireless links using a multi-modem CPE over
trusted (private) or untrusted (public) 4G/5G networks. The i2Slicer
at the Nomadic Node facilitates the management of network slices,
extending from the core and edge segments to the RAN and seamlessly
6

integrating various RATs.
6. Performance evaluation

We measure the average time taken 5G-VIOS to complete the pro-
cess over a number of iterations considering five stages including
Experiment Creation, Service Instantiation, Service Deployment, Service
Termination, and Service Migration. Each stage of the service life cycle
shown in Fig. 4 has been measured over four iterations and presented
in Table 4. It can be seen that the creation (𝑡𝑐𝑟𝑒𝑎𝑡𝑒) and instantiation
(𝑡𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒) phases are two orders of magnitude faster than the deploy-
ment (𝑡𝑑𝑒𝑝𝑙𝑜𝑦) and termination (𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒) phases and three orders of
magnitude faster than the migration (𝑡𝑚𝑖𝑔𝑟𝑎𝑡𝑒) phase. This shows that
the workflows related to managing the VM instances with OpenStack
(deployment, migration, termination) are more time-consuming while
workflows that only require 5G-VIOS or the setup of the inter-domain
transport network are faster.

Regarding the intra-domain slice deployment at Nomadic Node,
Table 5 illustrates the average execution time (over 100 iterations)
for creating, activating, and deploying (i.e., creation plus activation)
a slice using i2Slicer and considering the monolithic and disaggregated
deployment modes (i.e., the first slice, which includes control and
user plane NFs, and subsequent slices, which only include user plane
NFs). Note that in all the evaluated cases the time spent during slice
deployment was below 60 s, which is within reasonable limits for
scenarios such as the temporary or pop-up network demonstrated in
the Nomadic Node edge illustrated in Fig. 6. Additionally, although the
disaggregated approach entails slightly longer deployment times due
to the additional creation of logical resource entities and NFs, we can
consider it a reasonable trade-off for its higher flexibility and efficiency
in resource allocation.

Furthermore, we evaluate the performance of various ML-based
prediction models within the profiling system in predicting the resource
configuration and resource utilisation of a VNF. Then, we showcase
and discuss the efficiency of these predictions in the proactive life-
cycle management of VNFs. In order to test the performance of our

profiling method, the 5G-VIOS requested the OSM at each edge to
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Fig. 6. Experiment setup.
Table 3
Software components of experimental setup.
Component name Version Notes

5GVIOS 0.1.x Minimum resource requirements:
vCPU:6 cores, RAM:16 GB, Storage:100 GB

Openstack [28] Wallaby Deployed within an Edge

ETSI OSM [29] 13 Deployed with EPA within an Edge as a Kubernetes cluster
vCPU:5 cores, RAM:12 GB, Storage:100 GB (with EPA)
vCPU:3 cores, RAM:6 GB, Storage:50 GB (without EPA)

VyOS router [30] 1.4-rolling Supports inter-domain network connectivity
minimum requirements: vCPU:1 core, RAM: 1 GB, Storage: 4 GB

Deployed NS VMs N/A Requirements: maximum vCPU: 2 cores, RAM: 4 GB, and Storage: 50 GB
(Profiler predicts the optimum resources needed per each NS)

Amarisoft gNB 2023–06–10 Amarisoft Callbox Pro

Open5GS v2.6.2 Monolithic: vCPU:4 cores, RAM:4 GB, Storage: 60 GB
Disaggregated (First Slice): vCPU: 4 cores, RAM: 6 GB, Storage: 60 GB
Disaggregated (Subsequent Slices): vCPU: 3 cores, RAM: 2 GB, Storage: 60 GB
Table 4
Performance of 5G-VIOS during service life cycle stages (as shown in Fig. 4).

Creation (𝑡𝑐𝑟𝑒𝑎𝑡𝑒) Instantiation (𝑡𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑖𝑎𝑡𝑒) Deployment (𝑡𝑑𝑒𝑝𝑙𝑜𝑦) Migration (𝑡𝑚𝑖𝑔𝑟𝑎𝑡𝑒) Termination (𝑡𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒)

Duration 0.5 s 0.62 s 66.62 s 105.81 s 18.2 s
Table 5
Time spent in seconds during slice deployment operations by i2Slicer.

Deployment modes Slice
creation

Slice
activation

Slice
deployment

Monolithic 13.41 25.67 39.09
Disaggregated: First slice 17.27 40.75 58.02
Disaggregated: Subsequent slices 14.36 32.71 47.07

deploy three VNFs (two hosting iPerfs for transmission and reception
of traffic and a Firewall function in the middle as the profiled VNF in-
stance) over OpenStack. We collected the performance dataset records
of the Firewall function by exploiting the ZSM-oriented profiling entity
‘‘NAP’’ [16]. The collected VNF performance dataset is used to train and
test the ML-based prediction models of the Profiler. To put the values of
the VNF performance dataset in a scaled range, we applied a standard
scaler to the dataset and then split it into a train and test dataset.

To ensure a comprehensive evaluation, we utilised the tenfold cross-
validation technique on our dataset. This technique partitions the VNF
7

performance data into ten distinct sets, each constituting one-tenth of
the data. Each model is subsequently trained on nine of these sets and
validated on the remaining one. This process is reiterated ten times,
with the results averaged to yield a singular predictive performance
metric for each model.

6.1. Profile-based resource configuration prediction

The ML approaches supported by the Profiler are Gradient Boost-
ing, Random Forest, Ridge Regression, K-Nearest Neighbours, and Neural
Networks. We exploit the regression model of these ML approaches
for predicting resource configuration patterns and their classification
model counterparts for predicting the resource utilisation of the pro-
filed VNF. For the Neural Network regression and classification models,
we used the Multi-Layer Perceptron (MLP) Regressor and MLP Clas-
sifier, respectively. It is worth mentioning that all the classification
models for profile-based resource utilisation predictions are generic
out-of-the-box SciKitLearn implementations, and we did not adjust
any parameters using any hyperparameter optimisation techniques.
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Table 6
Performance of ML regression models for profile-based resource configuration prediction.

ML CPU Memory Link

regression models MAE RMSE MAPE EVS MAE RMSE MAPE EVS MAE RMSE MAPE EVS

Gradient Boosting 0.03 0.05 5.57 0.93 63.61 85.97 4.87 0.79 14.81 41.60 2.60 0.89
Random Forest 0.03 0.06 5.08 0.93 58.93 82.09 4.48 0.81 14.23 42.73 2.55 0.88
Decision Tree 0.03 0.07 4.64 0.90 66.31 100.54 5.01 0.71 15.43 47.20 2.65 0.85
Ridge Regression 0.05 0.07 10.02 0.88 77.06 113.24 5.95 0.62 46.64 64.63 8.43 0.72
K-Nearest Neighbours 0.05 0.08 9.28 0.86 69.00 95.10 5.33 0.73 38.56 58.89 6.86 0.77
Neural Networks 0.04 0.06 8.13 0.92 82.68 118.89 6.33 0.59 27.08 49.58 4.96 0.84
However, to improve the accuracy and optimise the performance of
the regression models, we tuned their hyperparameters using the Grid-
SearchCV which is an exhaustive search optimisation algorithm. By
exploiting the best values obtained for hyperparameters, we configured
our regression models as follows: Gradient Boosting with a learning
rate of 0.05, a maximum depth of 5, and 100 estimators; Random
Forest with a maximum depth of 10, a minimum sample split of 5,
and 150 estimators; Decision Tree with a maximum depth of 10 and
a minimum sample split of 10; Ridge Regression with an alpha value
of 10; K-Nearest Neighbours utilising seven neighbours and distance-
based weights; and a Neural Network featuring a ReLU activation
function, hidden layer sizes of (50, 50), and a learning rate of 0.01.

To evaluate the profile-based resource configuration predictions
made by the mentioned regression models, we used the following eval-
uation metrics: (i) Mean Absolute Error (MAE): measures the average
magnitude of errors between predicted and actual values, providing a
straightforward indication of model accuracy. (ii) Root Mean Squared
Error (RMSE): represents the square root of the mean of squared differ-
ences between predicted and actual values, emphasising larger errors.
(iii) Mean Absolute Percentage Error (MAPE): calculates the average
percentage difference between predicted and actual values, enabling
assessment based on relative errors. (iv) Explained Variance Score (EVS):
indicates the proportion of variance in the dataset captured by the
model predictions, ranging from zero to one, where one denotes a
perfect prediction. These different evaluation metrics help quantify the
magnitude of errors in predicted resource configurations, offering in-
sights into absolute accuracy and identifying large deviations between
predicted and actual values.

The CPU resource configuration prediction results, shown in
Table 6, illustrate that the Gradient Boosting and Random Forest
models exhibit superior performance in predicting CPU configurations.
These models achieve an EVS close to 0.93, indicating that they account
for approximately 93% of the variance in the test data. The Decision
Tree, although slightly lagging behind Gradient Boosting and Random
Forest, still offers decent accuracy, suggesting that the relationship
between the features and CPU configuration may be inherently hi-
erarchical. While Ridge Regression and k-Nearest Neighbours have
relatively higher error metrics (especially MAPE), they still offer rea-
sonable accuracy, making them viable alternatives when computational
simplicity is desired.

In the case of Memory resource configuration prediction, as shown
in Table 6, Gradient Boosting and Random Forest remain consistent
top performers across different resource configurations, achieving EVS
scores close to 0.80 for memory predictions. The Decision Tree offers
comparable accuracy, suggesting that for memory configurations, sim-
pler models can be as effective as more complex models like Gradient
Boosting, especially in scenarios where a slight trade-off in accuracy
can be afforded. As with the other configurations, Gradient Boost-
ing and Random Forest outperform other models in predicting link
configurations, as illustrated in Table 6.

6.2. Profile-based resource utilisation prediction

The VNF resource utilisation percentages are categorised into five
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qualitative states: trivial, low, medium, high, and overloaded, indicated
by numbers 0 to 4, respectively. These categories represent the set of
target classes that the ML-based classification models try to predict. The
boundaries for the resource range are adjustable and can be defined
by the service providers. Since resource utilisation is subjective and
VNF-dependent, we propose that service providers set these boundaries
according to (1) their resource utilisation policies and (2) the initial
resource requirements defined in the VNF descriptors.

These ML models are evaluated, based on their ability to predict
the VNF resource utilisation class patterns, by using the following
different error measures: (i) Accuracy : measures the ratio of correctly
predicted instances to total instances, providing an overall assessment
of model correctness. (ii) Precision: indicates the proportion of correctly
predicted positive observations among all predicted positive observa-
tions, gauging model precision. (iii) Recall (sensitivity): measures the
ratio of correctly predicted positive observations to actual positive
observations, indicating the model’s ability to identify positives. (iv)
F1 Score: a harmonic mean of precision and recall, offering a balanced
measure of a model’s accuracy and consistency. These different error
measures provide a comprehensive evaluation of classification models’
performance and help understand the overall correctness and precision
of resource utilisation class predictions.

The performance evaluation of various classification models for
resource utilisation prediction of the profiled VNF is represented in
Table 7. Analysing the results for CPU utilisation classification depicted
in Table 7, Gradient Boosting and Neural Networks emerge as the
leading models, achieving an accuracy close to 68%. The Decision
Tree and Random Forest models follow closely. For Memory utilisation
classification, Logistic Regression stands out, achieving an accuracy of
84%, followed closely by the Gradient Boosting and Random Forest
model. The Neural Network model’s performance for Memory classifi-
cation is on par with its performance for CPU utilisation classification,
reinforcing its consistency across different resource utilisation types.
For Link utilisation prediction the Gradient Boosting model yet again
takes the lead, but what is noteworthy is the remarkable performance
leap of the Neural Network model, achieving an accuracy of 93%. This
suggests that the Link utilisation patterns are complex and are better
captured by the intricate architectures of neural networks. The Decision
Tree and Random Forest models also display commendable accuracy
levels, reinforcing their reliability in diverse classification scenarios.

Computational Complexity and Prediction Performance Trade-
offs: Gradient Boosting and Random Forest models, while accurate,
are inherently complex. They involve ensemble methods, where mul-
tiple weak learners (usually decision trees) are combined to form a
robust prediction. The training time for these models can be relatively
high, especially when the number of trees is increased. However,
once trained, their prediction time is swift. The Decision Tree, on its
own, is computationally simpler than its ensemble counterparts. It is
faster to train and offers good interpretability. In cases where real-
time predictions are necessary and slightly compromised accuracy is
acceptable, a Decision Tree might be preferred. Support Vector Regres-
sion, Ridge Regression, and K-Nearest Neighbours models are gener-
ally less computationally intensive than ensemble methods, especially
K-Nearest Neighbours, which is instance-based. However, k-Nearest
Neighbours’ prediction time can be high, especially with large datasets,

as it computes distances between instances. Support Vector Regression
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Table 7
Performance of ML classification models for profile-based resource utilisation prediction.

ML CPU Memory Link

classification models Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

Gradient Boosting 0.68 0.67 0.68 0.67 0.83 0.83 0.83 0.83 0.92 0.92 0.92 0.91
Random Forest 0.66 0.64 0.66 0.65 0.83 0.82 0.83 0.83 0.90 0.89 0.90 0.88
Decision Tree 0.65 0.66 0.65 0.65 0.81 0.82 0.81 0.81 0.92 0.93 0.92 0.92
Logistic Regression 0.58 0.60 0.58 0.54 0.84 0.82 0.84 0.83 0.90 0.84 0.90 0.86
K-Nearest Neighbours 0.60 0.59 0.60 0.59 0.80 0.78 0.80 0.78 0.85 0.79 0.85 0.82
Neural Networks 0.68 0.66 0.68 0.67 0.82 0.81 0.82 0.81 0.93 0.92 0.93 0.92
and Ridge Regression, being linear models, offer good trade-offs be-
tween complexity and accuracy. Neural networks can vary widely in
computational complexity based on their architecture. The model used
here is a simple feed-forward network, which, while more complex than
linear models, is much simpler than deep networks. Training can be
time-consuming, but prediction times are generally fast.

Considering the trade-off between prediction performance and com-
putational complexity, the Decision Tree stands out. It offers compet-
itive accuracy, especially for CPU and Memory configurations, and is
computationally simpler than ensemble methods and neural networks.
For scenarios where quick predictions are crucial and a slight trade-off
in accuracy is acceptable, the Decision Tree might be the best choice.
In conclusion, the choice of model should be driven by the specific
requirements of the application. If the highest accuracy is paramount
and computational resources are abundant, ensemble methods like
Gradient Boosting or Random Forest are recommended. However, if
there is a need to strike a balance between accuracy and computational
efficiency, the Decision Tree offers a compelling choice.

6.3. Profile-based VNF migration performance

As we explained in Section 3 the developed prediction models
within the profiling system are used by 5G-VIOS to set up resources
for the NSs. These predictive models are valuable not just when these
services are first deployed but also throughout their life cycle. The
predicted resource utilisation can be used as input for resource man-
agers and LCM algorithms such as VNF placement, VNF migration,
and topology optimisation algorithms. The value of the proposed re-
source utilisation predictions becomes clear when the resource man-
ager takes proactive steps in response to the predicted decrease in
resources by releasing unnecessary resources to ensure resource effi-
ciency. In this section, we discuss a practical example to demonstrate
how the information gathered from our profiling system can enhance
decision-making in managing VNFs.

We focus on the proactive mode, where actions are taken before-
hand to prevent issues. In our case study, we are looking at a practical
scenario where moving VNFs to different physical nodes is a costly
process, especially when there are not enough resources available. This
migration is often prompted by two situations: either the network Link
is overloaded, or the physical node’s CPU and Memory resources are
overwhelmed. To simplify things, we assume that each virtual machine
(VM) hosts just one VNF. If a VNF starts using more resources than it
should, our system triggers the migration of the entire VM to another
host with sufficient resources. However, VM migration is costly and
can disrupt services, so it is something we want to avoid if possible.
Instead of waiting for links or nodes to become overloaded, our system
uses predictions to anticipate when a VM might reach its resource limit.
By doing this, we can proactively increase the VM’s Link capacity and
resource allocation before the situation becomes critical. This scaling
prevents the VM from overloading in the first place, avoiding the need
for disruptive VM migrations. This approach ensures that the services
remain reliable and consistent by preventing resource-related issues
from arising.
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In this case, we focus on a vFW-based NS, whose profile-based pre-
diction models were introduced in the preceding section. We select the
Decision Tree aggressor as the prediction model as it provides a tradeoff
between prediction performance and the computational complexity we
discussed before. This model predicts if the VM’s resources will get
overloaded based on how much resource will be utilised. We set some
thresholds to decide when a VM is overloaded. For example, in this
case, study we consider a VM Link-overloaded if it uses more than 92%
of its available network link, and Node-overloaded if it uses more than
95% of its CPU and/or 45% of its Memory, indicated by class label
4. Otherwise, it is a normal state, indicated by class labels 0 to 3. As
the main focus is on predicting the overload states, we first check the
performance of the Decision Tree classification model for predicting
the overload class of CPU, Memory, and Link resources through their
corresponding confusion matrices, depicted in Fig. 7. As shown in that
figure, the overall accuracy for predicting Link class is impressively
high, at approximately 97%. All the classes have high precision and
recall values, indicating the model performs very well in predicting
the Link class including both overload and normal classes. The overall
accuracy for predicting Memory class is approximately 67%. The model
performs best when predicting class 4 (overload state) with precision
and recall of 91% and 94% respectively. In the case of CPU, the
overall accuracy is approximately 42%, however, it has relatively better
precision and recall scores for class 4, indicating better predictions for
overload state prediction.

To better elaborate on how the profile-based trained classification
model is effective in reducing VM migrations, we check if the profiled
NS would be overloaded during various tests where resources and data
rates change randomly. We divide these tests into seven test sets, named
TS1 to TS7), as illustrated in Table 8. In this table, ‘‘N/A’’ is used for
the migration reduction percentages when it is not possible to compute
the percentage when the actual number of overloads is zero. The results
we got from these tests show how useful it is to have profiles for VNFs
and their predictions. The number of times we correctly predicted Link
or Node overloads tells us how often we need to increase the VM’s
network Link or CPU and Memory resources to prevent VM migrations.
This proactive scaling helps us avoid having to move the whole VM
around. As you can see in this table, the profile-based trained model can
predict all of the Link-overloaded states in four test sets out of seven.
Even in one of the test sets (TS6) it can predict both Node-overloaded
and Link-overloaded states and prevent both Link- and Node-caused VM
migration by 100 percent.

7. Conclusion

In this paper, we present 5G-VIOS, an autonomous inter-domain
network service orchestration framework for 5G and Beyond. 5G-VIOS
is able to automate the deployment of network services across multi-
domain environments, providing access to functions’ repositories and
services available to the various facilities. It provides ML and analytical
approaches through the profiling component, which aims for optimum
deployment of network services. The microservice-based design of
5G-VIOS achieves a high degree of scalability, resilience, fast deploy-

ment, quick debugging, and easy maintenance. In the future, we plan
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Fig. 7. Performance of the profile-based classification model based on the confusion matrices for predictions of (a) CPU, (b) Memory, and (c) Link resource utilisation.
Table 8
Reduction in the rate of VM migrations using profile-based Link utilisation predictions.

Test
sets

Considered resource
configurations

Input data
rate (Mbps)

Actual node-
overloaded

Predicted node-
overloaded

Node-caused
migration

Actual link-
overloaded

Predicted link-
overloaded

Link-caused
migration

vCPU
cores

Memory
(MB)

Link
(Mbps)

states states reduction (%) states states reduction (%)

TS1 0.3 1200 to 1500 450 to 700 250 to 300 7 5 71 0 0 𝑁∕𝐴
TS2 0.4 1000 to 1400 400 to 650 400 to 600 8 5 63 5 5 100
TS3 0.5 1200 to 1600 600 to 800 580 to 1060 9 4 44 6 6 100
TS4 0.6 1000 to 1300 400 to 750 750 to 1300 25 24 96 12 11 92
TS5 0.7 1000 to 1500 400 to 750 800 to 1400 14 9 64 6 6 100
TS6 0.8 1000 to 1200 400 to 700 1000 to 1400 10 10 100 6 6 100
TS7 0.9 1000 to 1400 400 to 800 900 to 1300 8 8 100 4 3 75
to develop the 5G-VIOS functionalities, such as service management,
monitoring, and profiling, to support an optimised placement and
orchestration of service function chains with multi-access technology
requirements in 6G networks.
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