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Abstract—To enable intelligent network management and vari-
ous 6G smart services, the precise estimation of user location and
device orientation is required. Light fidelity (LiFi) based on verti-
cal cavity surface emitting lasers (VCSELs) can not only respond
to the needs of 6G communication networks in terms of ultra-high
data rate, connection density and area capacity, but also enable
high precision position and orientation estimation. However, this
problem of joint position and orientation estimation is a non-
convex optimization problem. Therefore, in this paper, we design
deep neural networks (DNNs) for joint position and orientation
estimation of user devices in a VCSEL-based LiFi access network.
Simulation results demonstrate that the proposed framework
outperforms state-of-the-art methods by significantly reducing
position and orientation estimation errors while maintaining a
lower complexity. We illustrate the effectiveness of the proposed
DNN solution by considering two types of network deployment
including distributed VCSELs and collocated VCSELs. In ad-
dition, we present the convergence and complexity analysis for
the proposed learning framework. It is shown that the proposed
DNN provides at least 69% and 27.9% improvements in the mean
estimation error for position and orientation, respectively, over
the baseline method.

Index Terms—LiFi, 6G, indoor localization, orientation estima-
tion, vertical cavity surface emitting laser (VCSEL).

I. INTRODUCTION

Sixth generation (6G) networks are envisioned to meet the
demands of green communication, massive device connectivity,
seamless coverage, full intelligence, and autonomous systems
required for the 2030 intelligent information society. Diverging
from current communication networks, 6G networks will not be
limited to moving data, rather it will intelligently process data
in real time to provide various smart services. While achieving
ultra-high aggregate data rates of Tbps, increased area traffic
capacity of 1 Gbps/m2, and improved security and privacy are
key performance objectives of 6G, joint communication and
sensing is an indispensable requirement for efficient operation
of next generation networks [1]. In particular, high precision
positioning information is required for smart services such
as augmented reality, context-aware marketing, asset tracking,
and autonomous systems. Therefore, next-generation networks
require a technology that can simultaneously enable high-speed
communication and precise localization.

Light fidelity (LiFi) is one such promising technology that
can enable ultra-high data rates, improved connection density,
and precise positioning. Although LiFi has a wide unlicensed
spectrum, the achievable data rate of a LiFi communication link
is usually limited by either the transmitter or receiver. The LiFi

transmitter bottleneck is often due to characteristics of light-
emitting diodes (LEDs) as they suffer from poor electrical-to-
optical conversion efficiency and limited bandwidth. Nonethe-
less, it is possible to overcome this bottleneck by using laser
diode (LD)-based LiFi transmitters as they have a better con-
version efficiency, a higher modulation bandwidth, and well-
controlled light beam properties. The LiFi receiver bottleneck,
on the other hand, arises from the area-bandwidth and gain-
field of view (FOV) trade-offs of photodiodes (PDs). In general,
a smaller PD has a larger bandwidth and a higher optical
gain is achieved for a lower FOV. Thus, an LD-based LiFi
transmitter in conjunction with a smaller, low FOV receiver is
preferred for 6G applications as it can support ultra-high data
rate requirements.

Concerning the precise knowledge of the receiver location
and orientation, achieving sub-cm level localization accuracy
in an indoor environment is a major challenge. The widely
accepted global positioning system (GPS)-based localization is
neither applicable, nor accurate enough for indoor scenarios
due to high signal attenuation caused by building infrastructure.
Thus, non-GPS localization solutions are desirable for indoor
environments. Although WiFi and Bluetooth can be used for
indoor positioning, they have positioning errors ranging be-
tween 1–7 m and 2–5 m, respectively [2]. In contrast, LiFi-
based indoor positioning systems can achieve better localization
performance with a positioning error of 0.1–0.35 m. As LiFi
uses directional light beams for communication, it is also
crucial to estimate the orientation of connected devices for
optimal performance of the system. However, joint position and
orientation estimation for LiFi users is challenging due to the
complex and nonlinear interplay between received signal-to-
noise ratio (SNR), user orientation, and location. Traditional
methods like the maximum likelihood estimator result in mul-
tiple local minima and require additional information such as
initial position, prior estimation of orientation, or additional
infrastructure and an iterative algorithm [2], [3]. However,
intelligent deep learning (DL) methods can efficiently solve
this non-convex optimization problem of joint orientation and
position estimation at a relatively lower complexity without the
need for additional information and iterative algorithm.

Table I summarizes the existing DL-enabled LiFi indoor
positioning solutions [2], [4]–[7]. Only the work in [2] con-
siders DL based joint position and orientation estimation based
on the practically feasible approach of received SNR. Thus,



TABLE I: Related work on machine learning (ML)-based position and orientation estimation for LiFi

Reference Method LD Position
estimation

Orientation
estimation Positioning error1[cm] Complexity Remark

[2]
SNR based deep neural network (DNN),
convolutional neural network (CNN)
and k-nearest neighbors (KNN).

Mean, = 10.5
Precision2, = 17.2

An estimation time of
0.20 ms FOV = 90◦.

[4] RSS based Weighted
K-Nearest Neighbor (WKNN).

Mean = 7
Precision1 = 21

Not included.
Accuracy degraded
with reduction
in light-sensors.

[5]
Channel impulse response (CIR) based
DNN, CNN and long short-term
memory (LSTM) solution.

Mean = 4.2
Precision2 = 5.6

Estimation time ranges
from 23 to 64 ns.

FOV = 85◦

CIR collection is
computationally
intensive.

[6] Uses CIR of 9 LED-PD
pairs and fully connected NN.

For high SNR
Root-mean-square
error (RMSE) = 30

Complexity reduces with
increasing bin sizes.

CIR collection
is computationally
intensive.

[7]
Multi-task Federate learning
for spatial generalization
using cluster approach.

For SNR = 35 dB:
Mean = 6.7
Precision2 = 10

Not included. FOV = 90◦.

This
Work

VSCELs received SNR is exploited
for joint position and orientation
estimation using DNN.

Mean = 4.5
Precision2 = 8.72

Quantitative analysis
included.

FOV = 60◦

(More practical).
1Best possible position error reported in the reference.
2Represents the 90th percentile obtained using CDF of the position error (i.e., 90% of the estimation errors are below the precision value).

in this work, we consider [2] as the baseline reference for
comparison. All these works [2], [4]–[7] employed LED-based
LiFi systems with a low bandwidth (i.e., ≤ 100 MHz) and a
very high receiver FOV (i.e., 85◦–90◦). These specifications
are not suitable for multi-Gbps transmission rates required in
6G networks. By contrast, a laser-based LiFi system can signifi-
cantly improve both the localization and data rate performance.
In [8], the authors have shown that an array of arrays of vertical
cavity surface emitting lasers (VCSELs) can safely achieve
beyond Tbps aggregate capacities. In particular, VCSELs have
a bandwidth > 1 GHz, a low manufacturing cost, and a narrow
spectral width. The high-quality output beam of VCSELs can
be leveraged for precise indoor positioning as well.

In this paper, we propose a deep neural network (DNN)
structure for joint position and orientation estimation of users
in a VCSEL-based LiFi networks. The recommended DNN
approach does not require specific number of active links, nor
does it need prior knowledge about the position and orientation
of the user device. While it is possible to implement a more
sophisticated neural network (NN) such as a convolutional
neural network (CNN), for our study, we utilized the simplest
NN in order to ensure good performance without introducing
too much computation overload on the system. We illustrate
the effectiveness of the proposed DNN solution for two dif-
ferent VCSEL deployments, namely distributed VCSELs and
collocated VCSELs. We consider a more realistic framework in
this work with random user device orientation, blockages, and
a smaller receiver FOV. In addition, we develop the algorithm
for dataset generation which can be used as a reference for
future works. We also present the convergence analysis of
the proposed DNN. Through a comparison with the baseline
method by Arfaoui et al. [2], we show that the proposed
DNN achieves a superior performance in terms of the mean
and precision of position and orientation errors as well as the
computational complexity.

The rest of the paper is organized as follows. The system
model is described in Section II. The learning framework for
joint position and orientation estimation along with details
related to dataset generation and training convergence are intro-
duced in Section III. Performance evaluation and discussions
are presented in Section IV, and conclusions are given in
Section V.

II. SYSTEM MODEL

We consider localization of a LiFi user based on DNN in a
room of size 1× 1× 3 m3 by using a 5× 5 array of VCSELs.
Fig. 1 shows two possible configurations for the VCSEL array:
a) distributed VCSELs and b) collocated VCSELs. In the
distributed configuration, the VCSELs are evenly distributed
on the ceiling to provide uniform coverage for the network. In
the collocated configuration, on the contrary, the VCSELs are
located close to one another at the center of the ceiling. While
the distributed VCSELs configuration uses a simpler transmitter
design (i.e., a single VCSEL with or without optics), it needs
high-capacity back-haul connections between individual access
points (APs) which introduces more complexity and delay,
thus, limits the overall system performance. In contrast, the
collocated VCSELs configuration is easier to manage and
deploy, but its single transmitter requires an appropriate optical
design (e.g., plano-convex lens) in order to obtain a spatially
separated intensity profile for multiple laser beams. The optical
front-end design for such an AP is beyond the scope of this
paper; see [8] for more details.

A. Channel Modeling

The output profile of a single-mode VCSEL can be mod-
eled by a Gaussian beam, as shown in Fig. 2. The intensity
distribution for a Gaussian beam is expressed as follows [8]:

I(r0, d0) =
2Popt

πw2(d0)
exp

(
− 2r20
w2(d0)

)
, (1)



(a) Distributed VCSELs (b) Collocated VCSELs

Fig. 1: Two configurations for VCSEL array deployment.

Fig. 2: Channel model based on Gaussian beam propagation.

TABLE II: Truncated Laplace distribution parameters for the three
rotation angles of the LiFi receiver.

α β γ

Mean Ω− 90◦ 28.81◦ −1.35◦

Standard deviation 10◦ 3.26◦ 5.42◦

where Popt is the optical power carried by a single VCSEL
beam; r0 and d0 represent the radial distance and the axial
position, respectively, on the receiver plane in the cylindrical
coordinate system. The beam spot radius is given by:

w(d0) = w0

√
1 +

(
λd0
πw0

)2

, w0 =
λ

πθbeam
(2)

where w0 is beam waist radius, with λ and θbeam denoting
the operating wavelength and the far-field divergence angle of
the beam. Let, ϕ denote the radiance angle at the VCSEL
transmitter with respect to the receiver direction. Then, the
beam intensity in (1) can be written as:

I(d, ϕ) =
2Popt

πw2(d cosϕ)
exp

(
− 2d2 sin2 ϕ

w2(d cosϕ)

)
. (3)

Thus, the received optical power can be obtained using [9]:

Pr = I(d, ϕ)APD cosψ rect
(ψ
Ψ

)
, (4)

where APD is the effective PD area, ψ is the incidence angle
at the receiver, and rect(ψ/Ψ) = 1 for 0 ≤ ψ ≤ Ψ, and 0
otherwise, with Ψ denoting the half-angle FOV of the receiver.
The corresponding received SNR is given by:

SNR =
(RPDPr)

2

σ2
n

, (5)

with RPD is the PD responsivity, and σ2
n is the noise variance.

B. User Orientation Modeling

Since alignment between the transmitter and receiver plays
a major role in the performance of laser-based LiFi systems,
it is imperative to accurately model the receiver orientation. In

Fig. 3: Proposed DNN model for joint estimation of the LiFi receiver
position and orientation.

general, the orientation of a LiFi user can be modeled by using
three angles of yaw α, pitch β, and roll γ, for rotations about
the z, x and y axes, respectively. In [10], through experimental
measurements, it is shown that these three angles follow a
truncated Laplace distribution with their respective mean and
standard deviation values, as listed in Table II. The mean of α
depends upon the Ω which is defined according to the direction
of movement [10].

C. Eye Safety

One of the crucial practical challenges of utilizing laser
beams for indoor LiFi communications is to ensure the eye
safety of users. According to laser safety regulations defined
by the international electrotechnical commission (IEC) 60825
standard [11], the eye safety assessment involves determining
the optical power level at the most hazardous position (MHP).
For single-mode Gaussian beams, the maximum permissible
optical power primarily depends on the laser wavelength λ and
the beam waist radius w0. Based on [12], for a Gaussian laser
beam with w0 = 5 µm, the maximum permissible optical power
can be calculated as Popt,max = 16 mW. In this work, we
consider Popt = 10 mW for each VCSEL to fulfill the eye
safety constraint.

III. JOINT POSITION AND ORIENTATION ESTIMATION
USING DEEP NEURAL NETWORK

In this section, we put forward the design of a DNN to
jointly estimate the LiFi user position (x̂, ŷ, ẑ) and orientation
(α̂, β̂, γ̂) by exploiting the received SNR from multiple beams.
The proposed DNN, as shown in Fig. 3, is made up of multiple
layers which can mainly be classified into three categories: a)
input, b) hidden, and c) output layer. The received SNR from
NVCSELs are fed into the input layer and they are processed
by three hidden layers, each of which is composed of 100, 50,
and 20 neurons, respectively. Each hidden layer is followed by
a dropout layer which randomly removes individual neurons
with a certain probability during the training phase to avoid
overfitting. The activation function used at each hidden layer
is a rectified linear unit (ReLU) activation function. The output
layer comprises six neurons (Nout = 6), each of which is
responsible for estimating one of the six parameters (x̂, ŷ, ẑ,
α̂, β̂, γ̂). The DNN needs to be trained to learn the unique
mapping between the received SNR and the receiver position
and orientation.



Algorithm 1 Algorithm for dataset generation.
Input: Total number of data points N , number of VCSELs NVCSEL, statis-

tical distribution for orientation angles, and blockage probability Pb.
Output: Γ: dataset with N received SNR data points.
1: while i ∈ N do
2: Use the following uniform distributions to obtain the 3D position of the

user device, (xi, yi, zi):

fx(x) = U [0, L]

fy(y) = U [0,W ]

fz(z) = U [Hmin, Hmax]

(6)

3: Use the statistical parameters defined in Table II to obtain the three
rotation angles αi, βi , and γi.

4: Use the above rotation angles to determine the normal vector of the
user device at the ith location based on [10]:

ni =


cos γi sinαi sinβi + cosαi sin γi

sinαi sin γi − cosαi cos γi sinβi

cos γi cosβi

 (7)

5: while j ∈ NVCSEL do
6: Obtain the distance dj,i and radiance angle ϕj,i between the jth

VCSEL and the ith location (xi, yi, zi).
7: Use the normal vector ni to determine the angle of incidence ψ at

the receiver.
8: Compute SNRj,i based on (5).
9: end while

10: Store SNRi in Γ.
11: end while
12: if Blockage then
13: Find the probability of blockage using the Poisson distribution [13]:

Pb =
λkbe

−λb

k!
(8)

where λb is the expected occurrence rate which defines the average
number of blockages that occur in a time unit, and k denotes the number
of blockages.

14: To include the effect of blockages in the system, set Pb ×N random
values in Γ to 0.

15: end if

A. Dataset Generation

Since no preexisting dataset is available for joint position
and orientation estimation in VCSEL-based LiFi networks, we
have developed a MATLAB program for this purpose. The steps
involved in the dataset generation procedure are summarized
in Algorithm 1. This algorithm provides dataset Γ with N
received SNR data points. In our work, the dataset comprises
a total of 105 data points and it is divided into a 70/30 ratio to
obtain training and validation dataset.

B. DNN Training and Convergence

The DNN training consists of selecting the best set of neural
network parameters (i.e., weights and biases) that minimize the
error metric between the actual values of (x, y, z, α, β, γ) and
their estimated values (x̂, ŷ, ẑ, α̂, β̂, γ̂). The proposed DNN
structure, shown in Fig. 3, has 8775 trainable parameters in
total. During the training phase, the values for these parame-
ters are learned based on the Adam optimizer (with learning
rate=0.001) by minimizing the mean absolute error between the
actual and estimated values. The corresponding training loss
and validation loss for the two VCSEL array configurations
are shown in Fig. 4. The training and validation loss are the

mean absolute loss values calculated over the training and
validation set. They illustrate how well the model fits the data.
It can be observed that for both configurations, the training and
validation loss converges to a certain value even in the presence
of blockages. Note that the absolute value of loss is slightly
higher when a number of beams are randomly blocked with
an average blockage rate of λb = 10%, which happens due to
the missing data points as a result of the blocked links. This
highlights the fact that the occurrence of blockages adversely
affects the localization accuracy. Furthermore, from Fig. 4, it
can be observed that both the training and validation losses
decrease with increasing epoch indexes and stabilizes after
some epochs. This trend of validation loss confirms that the
designed DNN is not over-fitting and it can be generalized well
for unseen data points even in the case of blockages.

IV. PERFORMANCE EVALUATION AND DISCUSSION

In this section, the performance of the proposed DNN (Sec-
tion III) is evaluated under the two deployment configurations
for the VCSEL-based indoor LiFi network, as shown in Fig. 1.
In order to create the dataset and build the proposed neural
network, we have implemented Algorithm 1 using MATLAB
2021 and designed the DNN using Python 3.7. Table III
lists the system parameters used for simulations. The system
performance is evaluated in terms of the following metrics:

• Mean error µ: the average of the estimation errors.
• Precision error δ: the 90th percentile of the estimation

errors, so that 90% of the estimation errors are below δ.
• Complexity: the run-time complexity expressed in terms

of big-O notation.

A. Effectiveness of the Proposed DNN

The effectiveness of the proposed DNN is examined for dif-
ferent deployments and under blockage conditions as follows:

1) Different Deployments: Fig 5 illustrates the cumulative
distribution function (CDF) of the instantaneous position and
orientation estimation errors for both configurations. While the
orientation error is almost similar for the two configurations,
the position error is slightly higher in the case of collocated
VCSELs. More specifically, the difference in the CDFs of the
position error is more prominent for x and y coordinates as
compared to the z coordinate. Nonetheless, there is a marginal
difference between the CDFs for the two configurations, which
corroborates the effectiveness of the proposed DNN.

2) Performance in the Presence of Blockages: Figs. 6 and 7
illustrate the mean error and the precision error of the proposed
solution versus the average blockage rate λb in the presence of
blockages for distributed and collocated VCSEL deployments,
respectively. The case of λb = 0 indicates the blockage-free
system. It can be observed that as the average blockage rate
increases, both the mean and precision errors also increase. This
is expected because with a higher average blockage rate, the
DNN receives a proportionally lesser number of SNRs, which
in turn reduces the estimation accuracy.
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Fig. 4: Training and convergence of the proposed DNN.

Fig. 5: CDF of error for different VCSEL deployments: distributed
VCSELs (solid line) and collocated VCSELs (dashed line).

Fig. 6: Mean error µ and precision error δ for distributed VCSELs
for different values of the average blockage occurrence rate λb.

Fig. 7: Mean error µ and precision error δ for collocated VCSELs
for different values of the average blockage occurrence rate λb.

Note that the introduction of blockages into the system has
a greater impact on the position estimation than the orientation
estimation. This is due to the inherent difference in the statis-
tical distributions considered for orientation angles (truncated
Laplace) and position (Uniform). However, the mean value for
α varies with Ω, and as a result it is hard for the DNN to
learn the exact mapping between the SNR values and α. For
this reason, the estimation of α leads to the worst mean and
precision errors.

Overall, the proposed DNN works well for small values of
the average blockage rate for λb = 10, 30%. This is primarily
due to the fact that the DNN uses data from multiple VCSELs,

with NVCSEL = 25. Thus, in random realizations for smaller
values of λb, the expected number of times that the most useful
SNR undergoes a blockage is lower. However, for larger values
of λb, the DNN may not receive any of the useful SNRs to
correctly estimate the position and orientation.

B. Comparison with Baseline

1) Estimation Error Performance: The performance of the
proposed method is compared against the baseline system [2].
For a fair comparison, we only consider the position error and
the yaw angle error α, as the authors in [2] converted the other
two angles, β and γ, into a single angle in their final results. In
addition, the same dataset size of N = 105 is assumed for both
the proposed and baseline systems. Furthermore, no blockage
(λb = 0%) is considered in the system for fair comparison.
However, the best performance of the baseline system was
achieved by using a CNN. Hence, the performance of the
proposed method is compared against both cases of the baseline
CNN and DNN methods [2].

Table IV compares the estimation error performance of the
proposed DNN method with those achieved by the baseline
methods. It can be observed that the proposed method signifi-
cantly reduces the mean position estimation error by around 10
cm which translates to an improvement in the mean position
estimation by 69% and 70% over the baseline CNN and DNN
methods, respectively. Similar performance improvements are
observed for the precision value of the position error. The
proposed method reduces the position error precision to a
significantly smaller value of 8.72 cm as compared to 23.9
cm and 25 cm in the baseline-CNN and baseline-DNN cases,
respectively.

The proposed DNN also outperforms both the baseline
methods in terms of the mean and precision of the orientation
estimation error for α, with the corresponding improvements of
27.9% and 29.5% over the baseline-CNN and baseline-DNN. It
can be observed that the proposed DNN provides at least 69%
and 27.9% improvements in the mean position and orientation
estimation errors over the baseline.

2) Complexity: The run-time complexity of the proposed
learning framework is compared against the baseline [2] in
terms of big-O notation. We assume that the DNN has an Nin-
dimensional input, an Nout-dimensional output and K hidden
layers each with Mk neurons where k ∈ {1, 2, ...K}. In this
case, the number of multiplications required is O(NinM1 +
M1M2 + ... +Mk−1Mk +MkNout). Based on the proposed
DNN, its complexity is given by O(NVCSELs × 100 + 100 ×
50 + 50 × 20 + 20 × Nout). Also, using the specification of
baseline-DNN given in [2], the complexity of the baseline-
DNN is given by O(NLED × 256 + 256 × 256 + 256 ×
256 + 256 × Nout). Similarly, we assume that the CNN has
an Nin-dimensional input and an Nout-dimensional output, a
filter or kernel size of F , and K hidden layers each with Mk

neurons. The corresponding run-time complexity is given by
O(NinFM1+M1FM2+...+Mk−1FMk+MkFNout). For the
baseline-CNN, using the specification given in [2], the resulting



TABLE III: System parameters.

Parameter Value

Length L × Width W × Height H 1× 1× 3 m3

User height range, [Hmin, Hmax] [0.5, 1.5] m

Number of VCSELs, NVCSEL 25 (5× 5 array)

VCSEL wavelength, λ 950 nm

Beam waist radius, w0 5.9 µm

Transmit power per VCSEL, Popt 10 mW

System bandwidth, B 1 GHz

PD FOV, Ψ 60◦

Effective PD area, APD 1 cm2

Load resistance, RL 50 Ω

PD responsivity, RPD 0.5 A/W

Average blockage occurrence rate, λb 0, 10%, 30%, 50%

TABLE IV: Performance comparison with baseline.

Estimation error
Proposed

DNN

Baseline

CNN DNN

Position
mean, µ 4.51 cm 14.55 cm 15.05 cm

precision, δ 8.72 cm 23.9 cm 25.1 cm

Orientation (α)
mean, µ 8.85◦ 12.28◦ 12.56◦

precision, δ 18.23◦ 18.5◦ 18.9◦

TABLE V: Complexity comparison with baseline.

Run-time complexity

Proposed DNN O(NVCSEL × 100 + 20×Nout)

Baseline-CNN [2] O(NLED × 16× 64 + 64× 16×Nout)

Baseline-DNN [2] O(NLED × 256 + 256×Nout)

run-time complexity becomes O(NLED × 16× 64+ 64× 16×
64+64×16×64+64×16×Nout). Table V summarizes the run-
time complexities for different methods in a simplified form. It
is evident that the proposed DNN has a lower complexity than
the baseline.

V. CONCLUSION

In this paper, for the first time, the idea of using an array of
VCSELs was introduced to achieve sub-centimeter positioning
accuracy in a high-speed LiFi network. Specifically, a DNN
was designed for joint position and orientation estimation for
a LiFi receiver with random location and rotation angles. The
effectiveness of the proposed DNN was verified for different
VCSEL deployment configurations and in the presence of low
average blockages. The proposed DNN was able to achieve
high-precision positioning and orientation angle estimation for
all the considered scenarios without any prior knowledge or
assumptions about the LiFi network.

The performance of the proposed DNN was compared with
state-of-the-art results in [2], in terms of the mean estimation
error, the precision error, and the computational complexity. It
was shown that the proposed DNN outperforms the baseline
methods by providing an improvement of at least 69% and

27.9% in the mean position and orientation estimation errors
over the baseline [2]. In addition, the proposed DNN has a
significantly lower complexity which means that the proposed
network trains and estimates faster than the baseline methods.

In this study, the proposed DNN was effective for smaller
average blockages rates of λb = 10, 30%, however, for larger
blockage rates its performance was compromised as the most
useful links were blocked. For larger blockage probabilities, an
angle diversity receiver (ADR) can help in collecting useful
signals to effectively estimate the position and orientation of
the receiver even under very high blockages. This constitutes
an interesting direction for future research. Additionally, the
current work considers the simplest DNN structure for proof
of concept, considering more advanced DL methods can help
further improve the performance at the cost of increased
complexity. Thus, another future direction of this work can be
towards exploring multi-task learning for integrated communi-
cation and sensing.
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