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Abstract—Integrating mobile networks with Non-3GPP networks
provides a promising solution to mitigate the wireless RF spectrum
scarcity. Despite the maturity of integration technologies, a
comprehensive approach for radio resource allocation in highly
dynamic and complex multiple Radio Access Technologies (multi-
RAT) networks is still lacking. To tackle this challenge, this
paper proposes an Access Traffic Management (ATM) system that
enhances radio resource allocation during access, transmission, and
handover processes. The system features a scalable and concise
ATM-supported multi-RAT network architecture, supported by a
Deep Deterministic Policy Gradient (DDPG) based Intelligent ATM
(IATM) algorithm. To evaluate the proposed system, a Network
Simulator 3 (NS3) based network simulation is built with realistic
5G and WiFi modules, interacting with the IATM algorithm in
real time for decision making and policy improvement. Numerical
improvements of our solution demonstrate a 45% and 70%
increase in resource utilization efficiency, respectively, compared
to two traditional traffic steering modes. Additionally, our solution
improves link quality by a factor of three and doubles throughput
with the same cost. Moreover, session stability is significantly
enhanced under conditions of network size dynamics and UE
mobility. Notably, we explore a set of universal UE-side parameters
and verify their effectiveness, which further enhances the scalability
of the ATM architecture and facilitates the development of UE-led
IATM algorithms.

Index Terms—multi-RAT, radio resource management, DRL.

I. INTRODUCTION

The future cellular networks are expected to meet increasingly
stringent demands, providing ubiquitous and uninterrupted
connections for User Equipments (UEs) in a fully connected
world. This compels cellular networks to expand their scarce
radio spectrum into higher frequencies to achieve greater
capacity, incurring significant costs in terms of increased power
consumption and infrastructure development. On the other hand,
the coexistence of multiple Radio Access Technologies (multi-
RAT) is common to both current and future networks, especially
in indoor environments. Hence, integrating with the Non-3GPP
Radio Access Technologies (RATs) turns to be a potential
solution to release more unlicensed radio resources [1]. However,
each RAT currently employs its own spectrum management
strategy, leading to inefficient utilization of radio resources.
Therefore, it is imperative to develop a unified Access Traffic
Management (ATM) system for the future multi-RAT network.

The ATM in multi-RAT scenarios involves several wireless
network management issues, including network selection, net-
work handover, and network aggregation. Optimising these
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issues has been researched independently. The optimization
algorithms for RAT selection are proposed to improve network
utilization and user experience by selecting a less-congested,
better-quality, and lower-cost link [2, 3]. Enhanced vertical
handover strategies have been widely investigated to minimize
interruption when switching between different RATs [4]. Traffic
splitting, which diverts traffic and transmits it through several
RATs simultaneously, is another promising approach to provide
more bandwidth with better link utilisation [5]. Besides, some
works have jointly addressed several ATM issues, such as [6] and
[7], which both propose two-tier Deep Reinforcement Learning
(DRL) approaches. They use two separate DRL algorithms to
handle network selection and bandwidth allocation, respectively,
running on different network elements. However, addressing
individual ATM issues as separate or sequential network
functions can result in a more complex system architecture
and decreased information utilization efficiency. Therefore, a
holistic approach that jointly handles the three major ATM issues
is necessary for effective multi-RAT radio resource management.

In this regard, the Access Traffic Steering, Switching, Splitting
(ATSSS) function was proposed by 3GPP to serve as an unified
solution, providing more comprehensive and efficient multi-
RAT ATM [8]. Some inspiring preliminary explorations for the
control procedures and solutions of ATSSS function has been
illustrated in [8] and [9]. However, the ATSSS function currently
only provides the low-layer rules based on coarse-grained traffic
classification and limited network state information, hindering
its adaptation to the complexity and the dynamics of 5G multi-
RAT networks. Moreover, DRL-based algorithms have shown
superiority for UE access and resource allocation in complex
and the dynamic environments, as demonstrated in [6] and
[7]. Therefore, it is worthwhile to further explore DRL-based
algorithms for ATM in multi-RAT networks.

Furthermore, for better wireless resource management, it
is important to effectively utilize various types of network
information. In [4], user preferences, service requirements,
network attributes and mobility trajectories are used for seamless
vertical handover. However, some user and service information
may not be available due to privacy concerns. Additionally, some
RAT attributes are not common due to different vendors or stan-
dardization bodies developing them for various communication
scenarios, leading to varying protocols, interfaces, configurations,
management mechanisms, and performance metrics. These
uncommon RAT attributes can hinder the scalability of ATM
systems. Therefore, it is crucial to explore universal and



representative network parameters for ATM system to facilitate
interoperability and compatibility between different RATs.

In light of the imperative demand for ATM and the shortcom-
ing of the current solutions, this paper reports the development of
an intelligent ATM system for multi-RAT networks that provides
a unified solution for better access, whether it is achieved by
a single link or aggregated multiple links, while also enabling
seamless vertical handover. The main contributions of this work
are summarized as follows:

1) Architecture Design: We design a highly scalable ATM-
support network architecture that includes various features
such as multi-RAT integration, multi-path transmission,
telemetry collection, and near real-time model-training and
real-time decision-making for IATM.

2) Scalable Algorithm: We propose an adaptive Deep Deter-
ministic Policy Gradient (DDPG) based algorithm with
parameter sharing to accommodate the varying number
of UEs. Moreover, a set of network parameters that are
universal across RATs is selected and utilized. These
parameters can be easily collected by UEs, which reduces
interaction overhead for UE-led real-time ATM decisions.

3) Corroborating Simulation: We construct a multi-RAT
network using Network Simulator 3 (NS3), featuring
validated 5G New Radio (NR) and WiFi 802.11 modules
that accurately represent the complexity and dynamics of
real wireless networks [10, 11]. Its live interactions with
DRL algorithms are supported by standard interfaces.

4) Comparative Case-Study: We demonstrate quantitatively
that our proposed algorithm outperforms existing heuristic-
based ATSSS rules, achieving nearly a twofold increase
in resource utilization efficiency, tripling link quality, and
doubling throughput at the same cost. Furthermore, it is
prove that our algorithm can rapidly adapt to dynamic
network changes, such as variations in UE size or mobility.

The rest of the paper is organized as follows. Section II
describes the Multi-RAT ATM system architecture. The system
model and the optimization problem are given in Section III.
Section IV introduces the DDPG based IATM algorithm. Section
V presents the performance evaluation of our approach, followed
by the concluding remarks and future directions in Section VI.

II. DESIGN OF MULTI-RAT ATM SYSTEM

In this section, we discuss the architecture design of the
Multi-RAT ATM system, considering multi-RAT integration,
multi-path transmission, telemetry collection, and the ATM
workflow. We exemplify the multi-RAT architecture using an
integrated WiFi and 5G NR network, as depicted in Fig. 1. This
architecture is supported by a set of standard network interfaces,
including N6, N2, N3, NWu, F2, Y1, Uu, and E2, while also
incorporating the design principle of separating the Centralized
Unit (CU) and Distributed Unit (DU) in 5G NR [12].

Various interworking technologies have been proposed for
integrating WiFi with the mobile networks, such as LTE-
WLAN Aggregation (LWA) and LTE-WLAN Radio Level
Integration with IPsec Tunnel (LWIP). In 5G networks, Non-
3GPP Interworking Function (N3IWF) has been standardized to
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Fig. 1. Architecture of ATM system in hybrid 5G-WiFi network

associate the Non-3GPP access with the 5G Core (5GC) [12].
Our approach employs this, as illustrated in Fig. 1. Notably, the
architecture is scalable, as any other integration technologies
can be applied to converge the corresponding RATs.

Moreover, the multi-path transmission technologies, such as
Multi-path TCP (MPTCP) and Multi-path QUIC (MPQUIC),
allow UEs to transceive packets via multiple links concurrently,
and the prevalent multi-home feature of UEs allows them to con-
nect to multiple Radio Access Networks (RANs) simultaneously
[13]. In our design, we utilize MPTCP to enable multi-homed
UEs and User Plane Function (UPF) to transmit via the available
5G NR and WiFi access interfaces simultaneously.

The telemetry system comprises a set of telemetry modules
located in both UEs and RANs, providing regular updates of
the global signal state. The Performance Measurement Function
(PMF) introduced by [9] measures the access performance,
such as the round trip delay, while the Application Function
(AF) provides application information. Hence, the Network
Data Analytics Function (NWDAF) can collect and analyze
the abundant information gathered by telemetry system, which
is then shared with the RAN Intelligent Controller (RIC) to
support the training of IATM algorithm.

For the ATM operation, our IATM algorithm is trained as
an xAPP in the near real-time RIC (Near-RT-RIC), designed
based on Open RAN framework [14]. The trained model
undergoes periodic updates, and is processed by Policy Control
Function (PCF) and Session Management Function (SMF)
before being dispatched to the UE or UPF as the real-time
IATM policy. The distributed execution of the IATM policy
allows it to adapt to changing UE size. Moreover, the IATM
policy dynamically allocates the traffic between several RATs
based on current network state and user requirements to improve
network resources utilization and Quality of Service (QoS).

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a multi-RAT network where M RATs coexist
to assist U UEs in obtaining services from a remote server.
The UEs and RATs are indexed by {1, . . . , u, . . . , U} and
{1, . . . ,m, . . . ,M}, respectively. UEs move independently and
generate service requests randomly, which can be served by
several RANs simultaneously or separately thanks to multi-
path transmission. Packets are assumed to be transmitted in a



weighted round-robin pattern across all RATs, with each RAT
independently using its own rate control algorithm to schedule
packets transmitted over it. Let Hm

u (t) and Dm
u (t) indicate

the amount of data transmitted by the server and received by
UE u via RAT m during time slot t, respectively. Thus, the
transmission and reception rate via all RATs can be represented
by Hu(t) and Du(t). We assume that UE u requires a fixed
transmission rate Hu(t), and αm

u denotes the diversion weight
of the sub-flow via RAT m. Hence, the transmission rate Hm

u (t)
via RAT m can be expressed as Hm

u (t) = αm
u Hu(t). Besides,

the reception rate Dm
u (t) is influenced by the packet loss and

corruption due to network conditions. The total service time for
all served requests of UE u is denoted as Tu, and the capacity
of RAT m is denoted as Bm, which is unfixed based on the
selected Modulation and Coding Scheme (MCS) and its physical
bandwidth. Thus, the average system transmission and reception
rates H and D can be respectively expressed as follows:

H =
1

U
∑
u∈U

Tu

∑
u∈U

∑
m∈M

∑
t∈Tu

Hm
u (t) (1)

D =
1

U
∑
u∈U

Tu

∑
u∈U

∑
m∈M

∑
t∈Tu

Dm
u (t) (2)

where D is also known as the average throughput. The average
cost could be expressed as:

C =
1

U
∑
u∈U

Tu

∑
u∈U

∑
m∈M

∑
t∈Tu

λmHm
u (t) (3)

where λm is the adjustable cost ratio coefficient of each RAT,
which can be tailored to fit specific cost definitions.

The multi-RAT network is modeled in NS3, which operates
at the packet level, allowing for a more detailed modeling
of network performance and behavior [15]. Accurate and
valid 5G NR and WiFi 802.11ax modules, which adhere
to the specifications defined by 3GPP Release-15 NR and
IEEE 802.11 standard, are used for 5G and WiFi network
modeling, respectively [10, 11, 15, 16]. These modules include
physical layer and Media Access Control (MAC) layer models,
propagation loss and delay models, packet error models, and
rate control algorithms. Besides, UEs’ mobility is modeled
using the Gauss Markov mobility model, which provides near-
realistic movement patterns [16]. More information about the
NS3 modeling is presented in Table I.

B. Problem Formulation

With the objective to maximize the average system throughput
per cost, we formulate the optimization problem as follows:

P : max
D

C
(4a)

s.t.: C1 :
∑
u∈U

Dm
u (t) ≤ Bm, ∀m (4b)

C2 : Dm
u (t) ≤ Hm

u (t), ∀u,m (4c)

where the Constraint 4b refers to the bandwidth limitation of
each link, and the Constraint 4c indicates that the amount of

data received by UE u should be equal to or less than the
amount of data transmitted by the server.

The non-convex nature of this problem and the highly dynamic
and complex network conditions make it computationally
expensive using conventional methods [17]. Therefore, we will
reformulate the problem to suit the DRL-based solution.

IV. DDPG BASED MULTI-RAT IATM FRAMEWORK

A. MDP Modeling

The Markov decision process (MDP) representation is re-
quired to solve the non-convex problem using a DRL-based
solution. The typical elements of the MDP are defined as follows.

State Space is denoted as S . Here, we define any state s ∈ S
of UE u at the start of time slot t as:

su(t) = [pgu(t), n
g
u(t), n

w
u (t), d

g
u(t), d

w
u (t)] (5)

where pgu, ng
u, and nw

u correspond to 5G Reference Signal
Received Power (RSRP), 5G Signal to Interference plus Noise
Ratio (SINR), and WiFi SINR sensed by UE u. Plus, dg and
dw represent one-way delay (OWD) from the remote server to
UE u via 5G and WiFi links, respectively. Remarkably, only
telemetry information from the requesting UE is used as state
information, which effectively reduces the overhead during the
distributed ATM decision-making phase.

Action Space, denoted as A, represents the diversion weight
αm
u of the split sub-flow via RAT m. As only two RATs are

considered as example, the continuous action a ∈ A of UE u
can be represented by a single action value:

au(t) ∈ [0, 1] (6)

When au(t) = 1 or au(t) = 0, all the traffic is exclusively
transmitted through either 5G or WiFi link. For au(t) ∈ (0, 1),
the traffic is split between the two RATs, with au(t) and 1−au(t)
representing the percentage of traffic transmitted to 5G and
WiFi links, respectively, during the given time slot. Notably, by
dynamically adjusting the diversion weight αm

u in real time, the
multi-path transmission can provide smoothly seamless handover
and better session continuity.

Reward Function, as the evaluator of the action au(t), is
designed to maximize the throughput per cost for each UE in
every time slot according to the optimization objective P:

ru(t) =
Dg

u(t) +Dw
u (t)

(Hg
u(t) +Hw

u (t))(λgau(t) + λw(1− au(t)))ρ
(7)

where Dg
u, Hg

u, Dw
u , and Hw

u stand for the amount of data
received and transmitted via 5G or WiFi, respectively. λg and
λw are the cost ratio coefficients of 5G and WiFi, respectively.
ρ ∈ [0, 1] is a smoothing coefficient of the reward function for
better training performance. When ρ = 1, the denominator and
numerator of (7) are equal to the cost sum Cu(t) and throughput
sum Du(t) of all RATs, respectively. These physical meanings
are not ambiguous, as the trend of denominator is not affected
by ρ. This reward function is continuous within [0, 1].



Algorithm 1. DDPG based IATM Algorithm

1: Initial critic network Q(s, a|θQ) with weights θQ

2: Initial actor network µ(s|θµ) with weights θµ

3: Initial target network Q′ with weights θQ
′
← θQ

4: Initial target network µ′ with weights θµ
′
← θµ

5: Initial replay buffer M
6: for episode = 1. . . E do
7: Initialize OU noise N for action exploration
8: while

∑
u∈U Tu ≤ T do

9: while UE u requests for service do
10: while Service is not completed do
11: Collect state su(t) of UE u
12: Choose action au(t) using (8)
13: Send action au(t) to UE u for execution
14: Receive next state su(t+ 1) and reward ru(t)
15: Store (su(t), au(t), ru(t), su(t+ 1)) in M
16: Randomly sample a batch of N tuples from M
17: for i = 1. . . N do
18: Compute TD target y(i) using (9)
19: end for
20: Update critic network using (10)
21: Update actor network using (11)
22: Update target networks using (12)
23: end while
24: end while
25: end while
26: end for

B. DDPG Based Multi-RAT IATM Algorithm

The DDPG algorithm is chosen due to the continuity of the
defined action space. It is an actor-critic framework, where
the actor part performs as a policy to select actions based on
current state using state value function µ(s) = E[R(t)|s(t) = s],
while the critic part evaluates the selected action using the state-
action value function Q(s|a) = E[R(t)|s(t) = s, a(t) = a] and
guides the actor to improve its policy accuracy. The optimal
policy µ∗(s) = argmax

a
Qµ∗

(s, a) aims to achieve a maximum
long-term accumulated reward R(t) = E(

∑
t∈T γr(t)), where

γ ∈ [0, 1] is the discount factor and T is the maximum iteration
times of each episode. An episode ends when

∑
u∈U Tu ≥ T .

Besides, assuming regular and similar behavior patterns of UEs,
their policies can be trained more efficiently using parameter
sharing [18]. The proposed algorithm will be introduced in
detail, and its pseudo-code is summarized in Algorithm 1.

In our DDPG based IATM algorithm, we firstly initialize a
actor network µ(s|θµ), a target actor network µ′(s|θµ′

), a critic
network Q(s, a|θQ), a target critic network Q′(s, a|θQ′

) and a
replay buffer M. In each episode, when an idle UE u makes a
new request, the agent receives the observation su(t) from the
UE’s telemetry module and selects action au(t) according to:

au(t) = clip(µ(su(t)|θµ) +N (t), aLow, aHigh) (8)

where N is the Ornstein–Uhlenbeck (OU) noise. Next, the
traffic is proportionally divided into 5G and WiFi flows
according to au(t) within the time slot. If the service is
incomplete after the given time slot, the new observation state
su(t+ 1) and the reward ru(t) are collected. Then, the 4-tuple

(su(t), au(t), Ru(t), su(t+1)) is saved to the buffer M. When
one service is completed, the UE will wait for a random time
before proposing a new request, and the process repeats until
the maximum number of serving times slots T of the episode
is reached. Notably, to eliminate the asynchronous effects of
the random UE requests, a buffer indexed by the UE identifiers
(IDs) is used. This enables each UE’s MDP to be processed
independently, without being impacted by the requests timing
or order from other UEs.

Besides, the DDPG policy optimization process in [19] is
adopted in Algorithm 1 and performed concurrently with expe-
rience collection process. Using a mini-batch of N experience
tuples (s(i), a(i), r(i), s(i + 1)) sampled from the buffer M,
the Temporal Difference (TD) target value is calculated as:

y(i) = r(i) + γQ′(s(i+ 1), µ′(s(i+ 1)|θµ
′
)|θQ

′
) (9)

Then, gradient descent is applied to minimize the critic loss:

∇θQ

1

|N |
∑
i

(Q(s(i), a(i)|θQ)− y(i))2 (10)

The actor part updates with one-step of gradient ascent:

∇θµ

1

|N |
∑
i

(Q(s(i), µ(s(i)|θµ)|θQ) (11)

In addition, the weights of target critic and actor networks are
renewed by soft update:

θQ
′
← τθQ + (1− τ)θQ

′
(12a)

θµ
′
← τθµ + (1− τ)θµ

′
(12b)

where τ ∈ (0, 1) is the soft updating factor.
Using this framework, the trained IATM model can select

actions with maximum expected rewards, leading to an optimal
policy that resolves the formulated optimization problem P .

V. SIMULATION AND PERFORMANCE EVALUATION

In this section, we introduce the setup of the NS3-Gym
simulation system, as well as the performance evaluation of the
proposed ATM system.

A. Simulation System Setup

Our simulation is built with NS3-Gym, which combines
NS3 for network simulation and Open-AI Gym for DRL
training [20]. Fig. 2 shows the architecture of our NS3-Gym
simulation platform, where actions from DRL agent, and
states and rewards from network simulation can be exchanged
via standard interfaces in real time. Remarkably, the built-in
functions accurately simulate network attributes and transmission
performance due to the utilization of the validated 5G NR Lena
and WiFi modules [10, 11]. Besides, the 5G NR adopts a error
model-based adaptive MCS model according to Channel Quality
Indicator (CQI) feedback.

In NS3 simulation, a variable number of UEs are placed
within a 70-meter squared area. The UEs are multi-homed and
MPTCP-enabled, allowing they to access services via both 5G
and WiFi in a multi-path manner. The cost ratio coefficient of
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5G and WiFi are initially set to λg = 7 and λw = 1, respectively,
but can be adjusted based on the specific cost definition. Besides,
only one WiFi AP and 5G Base Station (BS) are used, as each
UE can connect to only one AP per RAT using the single
interface at a time, and the handover process within the same
RAT can also be reflected by the variation of telemetry data,
such as SINR. Thus, this simulation scenario are still sufficient
to validate the ATM system performance. The NS3 simulation
models and parameters used for UEs, services, 5G NR, and
WiFi are shown in Table I, partly following [2] and [4].

The IATM algorithm is configured with an episode length
of 1500 iterations and a batch size of 128. The learning rates
µ for the actor and critic network are given as 104 and 105,
respectively. The target network update coefficient τ and the
reward discount factor γ are set to 0.001 and 0.97, respectively,
while the reward smoothing coefficient ρ is 0.25. Fig. 3a presents
the convergence of average reward, actor loss, and critics loss
of our algorithm, which have been scaled and shifted to the
range of [0, 1] according to the formula shown in the legend.

To ensure general performance, all results here are the average
outputs from 10 repeated tests with different random seeds, and
the tests are performed with 5, 10 and 15 UEs to represent
different network congestion levels.
B. Numerical Result

To examine the performance of the IATM algorithm, we
compare it with two traditional ATSSS traffic steering modes
namely Active-Standby and Load-Balance, as described in [8].
In the Active-Standby mode, WiFi and 5G RATs are defined as
active and standby access, respectively. All traffic is transmitted
via the active access until it becomes unavailable, after which
traffic is transferred to the standby access. The Load-Balance
mode splits traffic between 5G and WiFi access with a weight
factor of 2:1, which is determined based on the approximate
ratio of their maximum capacities tested in our experiments. A
set of metrics are defined for performance evaluation.

Firstly, the average reception rate K is defined as the average
percentage of received data to transmitted data, denoted as

TABLE I
NS3 SIMULATION SETTINGS

Parameter Value

UE Number 5, 10, 15
Transmission power 23 dBm
Noise figure 9 dB
Antenna height 1.5 m

Service Packet size 1000 Bytes
Packet count 725-7500
Data rate 4096 Kbps
Loss rate threshold 30%

5G NR Central frequency 700 MHz
Channel bandwidth 20 MHz
Transmission power 49 dBm
Noise figure 5 dB
Antenna height 35 m
Channel model ThreeGppChannelModel
Propagation loss model UMi StreetCanyon LoS
Shadow fading 4 dB
Error model NrEesmIrT1

WiFi Standard IEEE 802.11ax
Central frequency 5.15 GHz
Channel bandwidth 20 MHz
Channel number 36
Transmission power 23 dBm
Noise figure 4 dB
Antenna height 2.5 m
Antenna type Isotropic antenna
Propagation loss model 30.2 + 36.7log(d)
Fading model Nakagami
MCS index 3
Guard interval 3200 ns

K = D
H

. A higher reception rate means greater throughput
under the same network capacity and transmitted data volume,
indicating higher utilization efficiency of network resources. Fig.
3b shows that our proposed algorithm outperforms the Active-
Standby and Load-Balance methods in terms of a higher and
more stable average reception rate K as network congestion
level changes. With 15 UEs, our algorithm achieves 45% and
70% improvements over the other two methods, respectively.

Besides, the average QoS satisfaction rate is defined as the
average percentage of QoS satisfaction times to the total QoS
checks, expressed as L =

∑
u∈U

∑
t∈Tu

Lu(t)∑
u∈U Tu

, where Lu is the
QoS indicator for UE u at time slot t. The QoS satisfaction
is measured by the packet loss rate with a threshold of 30%.
When the packet loss rate exceeds the threshold, Lu = 0;
otherwise, Lu = 1 . The proposed algorithm maintains excellent
transmission quality in terms of QoS satisfaction rate L as
the congestion level increases, as illustrated in Fig. 3c. Our
algorithm also achieves a QoS satisfaction rate almost three
times higher than the Active-Standby and Load-Balance methods
under congested conditions.

Furthermore, the average throughput per cost is defined
as P = D

C
, based on the optimization objective P . Fig. 3d

illustrates that the IATM algorithm outperforms two traditional
algorithms in terms of cost-effectiveness throughput regardless
of network congestion level. Despite their fixed policy avoiding
raising more 5G traffic expenditure, our model achieves a higher
throughput with the same cost. Notably, our algorithm improves
the throughput by more than double that of the Active-Standby
policy, and nearly three times that of the Load-Balance mode



(a) Convergence of IATM algorithm (b) Average reception rate K

(c) Average QoS satisfaction rate L (d) Average throughput per cost P

(e) Variation of throughput Du(t) (f) Stability of reception rate Ku(t)

Fig. 3. Simulation results include the convergence process of IATM
algorithm in Fig. 3a, and the transmission performance achieved by
IATM algorithm compared to two current ATSSS steering modes in
Fig. 3b, 3c, 3d, 3e, and 3f.

at the same cost.
Lastly, the transmission stability is crucial for use experience.

We collect the throughput sum Du(t) of UE u for 300 service
time slots using each ATM method when the UE size is 15. In
Fig. 3e, a rolling average with a window size of 10 time-steps
was used to smooth the collated data and obtain a curve with
less fluctuations, and the 95% confidence interval is presented
as a shaded region around the curve. As demonstrated in Fig.
3e, our algorithm achieves higher and more stable throughput.
This is intuitively revealed in the box plot of Fig. 3f, where the
dispersion of the reception rate Ku(t) =

Du(t)
Hu(t)

is represented by
the height of the box and distance between the outer lines. The
IATM policy shows a much smaller box and shorter range of
outer lines, indicating a more stable transmission performance
compared to the other two methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an intelligent ATM sys-
tem for 5G-WiFi hybrid multi-RAT network to improve the
system throughput cost-effectively. Firstly, an concise multi-
RAT network architecture was designed to achieve network
integration, multi-path transmission, and telemetry collection for
ATM function performing. Our DDPG based IATM algorithm
is trained in near real-time RIC to maximize system throughput
while minimizing costs, and is subsequently deployed in the UE
and UPF for real-time execution and to support dynamic UE

size. Besides, our approach reduces the overhead by requiring
only the UE-side information during execution. Furthermore,
using the NS3-Gym simulation, we have demonstrated that our
solution is vastly superior in radio resource utilization efficiency,
service quality, cost effectiveness and connection stability,
particularly in congested networks. Our ATM system maximizes
the advantages of the Non-3GPP and 5G mobile networks
integration and contributes to future multi-RAT networks with
enhanced connections at a lower cost.

In future work, we will incorporate cost modeling for RATs
and investigate the performance of our algorithm under varying
cost ratio coefficients. Moreover, we will explore more scenarios
with multiple types of RATs, multiple APs for each RAT, and
more service types to expand the scope of our research. The
exploration of the IATM management in testbed is undergoing.
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